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Mechanism of vapors sorption on Fiberglas-E 

Rodney Jau-wei Huang 

Under the supervision of T. Demi re1 
From the Department of Civil Engineering 

Iowa State University of Science and Technology 

The mechanism of interaction of water vapor and benzene vapor with 

Fiberglas-E was investigated using sorption isotherm, sorption rate and 

infrared absorption experiments. E-glass, as received was the cleanest 

available, treated with deionized water when manufactured. Test samples 

were cut into 2 cm long fibers or ground into powder and screened to pass 

a No. 200 or a No. 400 sieve. The latter was further compressed into a 

pel let. 

The surface free energies of wetting were computed from the adsorp-

2 2 
tion isotherm data yielding values from -235 erg/cm to -254 erg/cm and 

2 2 
-71.1 erg/cm to -72.4 erg/cm for water and benzene adsorption respec­

tively, depending upon temperature, surface geometry and sample treatment. 

Less affinity for benzene adsorption resulting in smaller work of adhesion 

suggests that actual adhesion of hydrocarbons is impossible in the 

presence of bulk water. 

The BET method was used to obtain the specific surface of E-glass. 

The surface areas so obtained were found to be ten times greater than the 

areas calculated from geometry. It was believed that the E-glass surface 

consists of fine micropores of about 23 8 in size. This should account 

for the great reduction of tensile strength when exposed to a moi se en­

vironment. The increase in surface area and micropore size during 
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subsequent runs supports the proposition that the glass suffers loss of 

strength with age when exposed to moist atmosphere. 

The isosteric heat of adsorption computed using the Clausius-

Clapeyron equation gave good agreement with that computed from the BET 

parameters for the first layer of adsorbed molecules. The heat of ad­

sorption reaches the heat of liquefaction beyond two to three layers of 

adsorbate on E-glass fibers. The computed entropies of adsorption indi­

cate that the state of adsorbed phase is between that of solid and liquid 

at low coverage. The mobility of the adsorbate increases with coverage 

until it reaches the liquid stage. 

Sorption isotherm, sorption rate and infrared absorption data suggest 

that the hysteresis of the sorption isôtherm is due to the formation of 

—17 2 
hydroxy1 groups which diffuse into the glass at a rate of 10 cm /sec 

at ordinary temperatures; and also to attractive forces existing in fine 

internal capillaries. The activation energy of adsorption of water vapor 

by E-glass was found to be quite high. This may be due to a combination 

of adsorption, solubility and diffusion. A mechanism by which the water 

vapor diffuses into E-glass has been hypothesized. 

The changes in the heat of adsorption and the variations in the fre­

quencies and the intensities of infrared bands of adsorbed species as 

the surface coverage increases, were attributed firstly to the surface 

heterogeneity and secondly to the mutual adsorbate interactions. 
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INTRODUCTION 

The strength of pristine glass fibers is enormous—approaching a 

theoretical strength of one to four million psi, Exposure to atmospheric 

moisture results in rapid degradation of the glass fibers by one or two 

orders of magnitude. In general, the strength of silicate glasses is a 

function of the integrity of the surface. Griffith flaws are believed to 

be formed by reactions with moisture. These flaws initiate a fracture 

crack which is catastrophic because there is no ductile energy-absorbing 

deformation to reduce stress concentration at the crack tip. This leads 

to surface sensitive fracture. 

In glass-reinforced plastics, the organic matrix binds glass fibers 

together and protects their surfaces to produce the highest strength-to-

weight ratio available in commercial materials. Glass-reinforced plastics 

may lose strength by water penetration at the glass-resin interface. Im­

proved composites could be produced if the fiber-matrix bond is improved. 

Chromio and si lane compounds often are used as "coupling agents" to im­

prove the bond. 

The surface of glass has been extensively studied by physical and 

chemical methods (6, 25, 64, 109). The chemical reactivity and physical 

properties of the surface are important to many applications. The 

structure of glass surface, however, remains a mystery despite a large 

body of literature on the subject. Qualitative statements made are based 

on indirect evidence obtained from property changes with surface modifi­

cation. Because of the lack of periodicity of glasses, diffraction 
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techniques cannot be applied. The resonance techniques, such as infrared 

absorption, and the surface adsorption or adhesion techniques may help to 

give a better picture of glass surface structure. This is the objective 

of the present study. 

E-glass was chosen as the material for this investigation because of 

its wide scale applications in various industrial fields, for example, 

in aeronautical and space vehicles and submarines. 

The present study consists of an investigation of the thermodynamics 

and kinetics of sorption isotherms and of the infrared spectra of surface 

films. 
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THEORY AND REVIEW OF LITERATURE 

Adsorption Thermodynamics 

According to the potential theory, adsorption occurs because the 

adsorbent exerts a strong attractive force upon the gas in its vicinity. 

The attraction forces are so great that many adsorbed layers can form on 

the surface. Polanyi (99) defined the adsorption potential at a point 

near the adsorbent, as the work done by the adsorption forces in bringing 

a molecule from the gas phase to that point, and expressed it by the 

compensating compressional increase in the free energy; 

5; 

£. = r Vdp . (1) 

Here e. is the adsorption potential at a point where the density of the 

adsorbed gas is g., 6 is the density in the gas phase, and V = M/6, where 

M is the molecular weight of the adsorbate. To evaluate this integral, 

Polanyi assumed perfect gas behavior in the gas phase and incompressible 

behavior in the adsorbed phase leading to the evaluation of the adsorption 

potential as merely the work of compressing an ideal gas isothermal I y from 

to p^ (the vapor pressure of the liquid): 

Po RT p 
C; = J — dp = RT In — (2) 

Px 

where R is the gas constant, T is the absolute temperature, and p^ and p^ 

are the saturation and equilibrium vapor pressures respectively at given 

temperature. The potential thus calculated corresponds to a potential 
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surface contour above the surface of the adsorbate enclosing a volume cp. 

between itself and the surface of the adsorbent. Potential theory states 

that there exists a relationship between ej and cp.: 

e. = f(cDj) (3) 

and this relationship is temperature independent, i.e. 

or "df^- - 0 

The curve representing Equation 3 is called the characteristic curve and 

can be obtained experimentally from adsorption data. 

The theory has been sufficiently successful to indicate these 

assumptions are fulfilled with a fair degree of accuracy (8?, 56, 88, 63). 

A large number of variables affect adsorption such as surface area, 

surface roughness, capillarity, and the nature of the interaction between 

adsorbent and adsorbate. Berenyi (15, 16) considerably improved the 

theory by applying a correction to cp.. 

^.= q/f -6. (5) 
I D 

where q is the weight adsorbed, is the density of the liquid at boiling 

temperature, and f is a correction factor which is the sum of individual 

correction factors for compressibility and thermal expansion fsee Table 1 

(18, p. 103)1. 

If the surface area changes during the course of adsorption, the 

adsorbed volume no longer remains constant at the point of constant po­

tential. But the thickness of an adsorbed layer is controlled by the 



www.manaraa.com

5 

Table 1. Berenyi's correction factor f 

(a) Compressibility Correction, f^ 

•/'b 

C
D

 II 0 100 1000 mmHg 

0.6 

<N O
 

O
 1.03 -- --

C
O

 o
 1.01 1.02 1.03 1.04 

(b )  Thermal Expansion Correction, f^ 

T/Tb ft 

0.6 1.16 

0
0

 o
 1.10 

(c) Total Correction, f 

o
 

II 

X
 

a
 10 100 1000 mmHg 

0.6 

C
O

 

1.19 --

0
0

 o
 1.11 1.12 1.13 1.14 

molecular diameter of the adsorbed gas, and is not a function of minor 

changes in potential. The thickness will be less sensitive to changes in 

surface roughness, which also changes surface area, than the adsorbed 

volume will be. Hence one must plot € vs t rather than e vs çp as the 

characteristic curve when surface changes may occur. The thickness may 

be obtained from the pressure, compressibility, liquid density, weight 

adsorbed and surface area. Therefore, 

t = cp./S (6) 
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where V is the specific surface area of adsorbent. 

A precise surface area measurement is needed to obtain the adsorbed 

film thickness, a significant parameter in the potential theory. The 

Brunauer-Emmett-Tel1er (BET) theory of multimolecular adsorption was used 

for surface area determinations in the present work. This theory has been 

widely employed for surface area determinations since it was proposed in 

1938, (32, 104, 110, 53). Brunauer et al. (21) assumed that the forces 

chiefly responsible for the binding energy of multimolecular adsorption 

are the same as those responsible for condensation. This is the basic 

assumption of the theory of multimolecular adsorption from which they 

derived the following isotherm equation for adsorption on a free surface 

(an independent derivation of the equation is presented in the Appendix): 

— + 4-^-' 4- (7) 
VlPo - P' " V "o 

In Equation 7, V is the volume of vapor adsorbed at pressure p, the 

volume of vapor adsorbed when the surface of the adsorbent is covered by 

a monomolecular layer of adsorbate and p^ the saturation pressure. The 

constant C is approximately given by the equation: 

C = - E^)/RT (g) 

where E^ is the average heat of adsorption of the first layer and E^^ is 

the heat of liquefaction. When the amount of vapor adsorbed is expressed 

in terms of mass. Equation 7 becomes : 

+ AV- (9) 
Q(Po - P' '  V Po 
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where q îs the mass of vapor adsorbed at pressure p and is the mass 

adsorbed at monolayer coverage of the adsorbent surface. Brunauer and 

his co-workers (20) developed a more general isotherm equation which 

considers factors limiting the number of layers that can be adsorbed, and 

also includes capillary condensation. At low value of relative pressures 

their more general equation reduces to Equation 7 or 9. Therefore, accord­

ing to BET theory, physical adsorption in the low pressure range may be 

characterized by the two parameters q^ and C. Values of these parameters 

can be determined if a plot of 

q(p„ - P) versus p/p^ 
o 

from the experimental data gives a straight line as predicted by 

Equation 9. 

When the area, s, occupied by one molecule of the adsorbate on the 

solid surface is known, the specific surface, 2, of the solid can be 

calculated from the parameter q of the BET equation by 
m 

E = N • q^ • s/M (10) 

where N is Avogadro's constant, M is the molecular weight of the adsor­

bate, and q^ is expressed for one gram of the adsorbent. Assuming closest 

packing, Brunauer (18, p. 287) gave the following expression for the area 

covered by a molecule of adsorbate; 

M 2 /3  M 2 /3  
s = (4) (0.866) (—îi-) = 1.091 (-^) (11) 

4N8V2 N6 
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The coefficient 1.091 is called the packing factor; its value for an 

adsorbate may vary from one adsorbent to another depending on the packing 

and on the variation of adsorbent pores (80). Equation 10 then can be 

used to determine specific surface areas of adsorbents once the corss-

sectional area of the adsorbate molecule is known. 

When a molecule of adsorbate is adsorbed on the solid surface, heat 

evolves and surface energy of the system reduces. Parameter C includes 

the average heat of adsorption for the first layer, E^. The values calcu­

lated by Equation 8 are less than measured heats of adsorption but are of 

the same order of magnitude (19). Harkins and Jura (59) found that the 

heat of adsorption decreases as the thickness of the water film increases, 

but that at the thickest films that could be measured the heat of ad­

sorption is still greater than the heat of liquefaction of water. The 

heat of adsorption in the last layer is always greater than the heat of 

liquefaction, since the adsorbate loses energy by the disappearance of 

free liquid surface. Clampitt and German (23) rederived Equation 8 and 

arrived at: 

-E^) . E,)VRT 

where is the heat of vaporization of the surface layer. The correc­

tion term (aH^ - E^^) accounts for the differences in the heat of vapori­

zation of successive layers. 

The heat of adsorption is not solely a function of adsorbates; it is 

also a function of temperature of the system, as well as of the type of 

adsorbent. The heat of adsorption may be obtained, more reasonably, by 
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applying the Clausius-Clapeyron equation (62, 41). 

5^." P. 1 = (13) r  f l  K,  - I  =  
L ô(l/T) 't R 

where t refers to any appropriate coordinate and ah" is the isosteric heat 

of adsorption. By keeping q^, the weight of adsorbed gas on a unit area 

of adsorbent constant, the following integrated form can be obtained 

(67): 

(In P,/P2)q^ = 6Hg/R (1^2 - lA^) (14) 

where p^ and p^ are equilibrium vapor pressures at temperatures and Tg. 

The value, obtained is called the isosteric heat. The adsorptive 

free energy and adsorptive entropy changes may be calculated for the 

transfer of one mole of adsorbate from the gas phase to the adsorbed 

phase (see the Appendix). The free energy change for this process is: 

AG = €. =-RT In p^/p (15) 

The enthalpy change for the same process is given by aH = AH^ - AH^j where 

AHg, the isosteric heat, is the enthalpy change for the transfer of one 

mole of vapor to the surface, and AH. for the transfer to the liquid (see 

the Appendix). The entropy change for the transfer of one mole of liquid 

to the adsorbed phase is therefore given by 

i s  — ( 1 6 )  

Adsorption of molecules from a gas on to a surface is always accompa­

nied by a drop in entropy. The study of the magnitude of this decrease 

may enable us to draw some very important conclusions about the freedom of 
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movement of the adsorbed molecules. 

The entropy change on adsorption is the sum of changes in the trans-

lational, rotational, and vibrational entropies of the molecules (108, 

p. 150). 

AS = is"" + AS™' + 35"'" (17) 

The transiational entropy change per mole of a gas in its standard 

state (760 mm, T) to a mobile adsorbed film in its standard state (G^/T) 

is calculated to be: 

= _ Agtr ^ R/2inM + R/21nT + 2.30 (18) 

or to a localized adsorbed film where the transiational entropy change is 

simply the loss of all the translational entropy of the gas: 

-ASg^ = = 3/2RlnM + 5/2RlnT - 2.31 (19) 

where the subscripts g, s and a indicate gaseous, standard and adsorbed 

states, respectively. 

The rotational entropy change can be calculated on the basis of how 

the molecule rotates in the adsorbed phase. Hence, 

AS = R [In l/jrcT r _ — kT]"' + n/2] (20) 
h 

where a+b+ . . +g=n; I , 1 , ...I are the moments of inertia of the A B G 

molecule and a is the symmetry factor, and h is the Plank's constant, 

in the above expression, the degeneracy of the lowest energy state is 

omitted because it is not affected by the process of adsorption; the 
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symmetry number is retained because it depends on the ability of the 

molecule to rotate and this may alter on adsorption. 

The vibration of the adsorbed molecule with respect to the surface 

contributes to the entropy of adsorption—if the film is mobile and the 

vibration is that of a harmonic oscillator in one degree of freedom, 

for which the frequency does not change with temperature, the entropy 

V i b 
contribution, is given by: 

3 V i b ^ _ N h v  .  R , n ( ,  -  3 - h v / k T )  ( 2 , )  

^ (ghv/kT_|)T 

where v is the frequency of the vibration. If the adsorbed film be 

localized, the entropy of vibration would be described by: 

gvib = 2 r Rln (1 - 3-^*11 /%?)! + 
® " (ghvll /kT_,)T 

- Rln(l - , (22) 
(ehvi/kT_,)T 

Thermodynamical Adhesion 

in the formation of a joint, the surface concerned is first wetted 

by the liquid adhesive. Subsequently the adhesive solidifies and the 

strength of the joint will depend on the molecular attraction at the 

adhesive-adherend interface, and also on the contact angle that the ad­

hesive makes at the ends of the joint. The thermodynamics of the solid-

liquid interface is based on two equations, that of Young (124) for the 
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contact angle and that of Dupré (36) for the work of adhesion (Figure 1). 

1f is the free energy of the solid surface, the free surface energy 

of the liquid, y^^ that of the solid-liquid interface, and 0 the equilib­

rium contact angle, and if the solid is insoluble in the liquid, 

ys = 7sl "^1 (23) 

2 
The work of adhesion, that is the work required to separate 1 cm of 

solid-liquid interface, is 

w/= 7s + r, - Tsl- (24) 

Substituting y^^ from Equation 23 into Equation 24: 

= y^ (1 + cos G). (25) 

It is clear that this model suffers a serious defect. As pointed out by 

Bangham and Razouk (8), it neglects the presence on the free solid sur­

face of a film of vapor in equilibrium with the saturated vapor at 

pressure p^ (saturation pressure of the liquid. Figure 2), Therefore, 

the equilibrium relation becomes; 

y =y o = y , + y ,  o cos 0 = y  o + (26) 
fs fsv fsl 'Iv 's ' 

where ir is defined as the spreading pressure, and it is the surface free 

energy change corresponding to immersion in vapor. 

Bangham (7, 8) was first to show that the Gibbs adsorption equation 

could be used to determine the surface free energy changes that occur 

during adsorption of vapors on solid surface i.e.. 



www.manaraa.com

13 

' 1  

F i g u r e  1 ,  M o d e l  f o r  Y o u n g ' s  e q u a t i o n  



www.manaraa.com

\ k  

F i g u r e  2 .  S c h e m a t i c  r e p r e s e n t a t i o n  o f  L h e  c o n t a c t  a n g l e  

f o r m e d  b y  a  l i q u i d  d r o p  o n  a  s o l i d  s u r f a c e ,  e . g .  

m o d i f i e d  m o d e l  f o r  Y o u n g ' s  e q u a t i o n  



www.manaraa.com

15 

P = P 
° Và[l AF = - J (27) 

p = 0 

in which djj, = RTd(lnp), and Equation 27 becomes 

(28) 

where T is the surface concentration, and [j, the chemical potential. The 

free energy change AF will be referred to as the free energy of immersion 

and the symbol AF was chosen to differentiate it from the adsorptive free 

energy AG. Using the Gibbsian adsorption equation, Boyd and Livingston 

(17) derived a similar equation for the free energy of immersion of a non-

porous wettable surface (0=0) in a saturated vapor. 

In considering the differential free energy change upon the transfer of 

vapor from gas onto the solid surface, Demi rel and Enlistun (33) arrived at 

which is more convenient when relative vapor pressure is employed. AF  

given by Equations 27-30 may be interpreted as the free energy change 

accompanying the process of transferring saturated vapor onto a unit area 

of solid surface; the process is terminated when the equilibrium pressure 

reaches p . 

(29) 

(30) 

o 
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2 
The work of adhesion work required to separate 1 cm of solid-

liquid interface in vacuum leaving a perfectly naked solid surface, becomes: 

Wg = YgO + = w/ - (31) 

If the adsorbent is a mass of non-interacting fine powder wettable by 

the liquid, capillary condensation in the contact zones of the particles 

theoretically fills the voids with the liquid before the final saturation 

pressure is attained. In such cases, since 6=0 and liquid surfaces 

di sappear: 
% = AF = Yg, - YgO (32a) 

i.e., A F should be the free energy of immersion of a unit area of solid 

surface in the bulk liquid, which is called the "free energy of wetting." 

If capillaries do not fill and therefore liquid surfaces do not disap­

pear with 0 = 0 and thus 

% = 6F = Yg, - YgO + 7^^ . (32b) 

Therefore for wettable adsorbents n and are synonymous, 

Bartel1 et al. (34) extended this view in the case of porous solids: 

they also showed thet the validity of this point of view does not depend 

upon the degree of compression of the powder (27). Some investigators 

(17, 71) calculated by an extrapolation of the adsorption isotherms to 

saturation pressure and identified it with the free energy of immersion in 

saturated vapor, assuming that no capillary condensation takes place. The 

assumption of no capillary condensation, and the steepness of the adsorption 

isotherm near the saturation pressure, introduce uncertainties in the free 

energy of immersion determined in this manner. It has been shown by Carmen 

et al. (23) and Craig et al. (27) that by using a compressed powder as 
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adsorbent an adsorption isotherm of type IV is obtained instead of usual 

type II and, therefore, the isotherm can be extrapolated to saturation with 

certai nty. 

Zisman (125) states that when spreading occurs, the specific surface 

free energy of the liquid is usually less than that of the solid. There­

fore, every liquid having a low specific surface free energy always spreads 

freely on a specularly smooth, clean, high energy surface at ordinary 

temperature unless the film adsorbed by the solid converts it into a low 

energy surface having a critical surface tension less than the surface 

tension of the liquid. Harkins (59) has developed conditions for spreading 

in terms of an initial spreading coefficient S. S equates the work of 

adhesion minus the work of cohesion: 

S = TgO + Y,yO - - 2Y,yO = YgO - (y^^o + Y^,). (33) 

For spreading S > 0« So, a spontaneous spreading over a surface can occur 

only when it results in a reduction in the free energy of the system, i.e., 

when the adhesion of liquid for solid exceeds the cohesion of the liquid. 

For complete spreading or wetting of the solid, however, the contact angle 

must be zero, it has been shown by Kline (74) that clean surfaces and in­

creased surface area favor adhesion. 

The stability of a coupling sized glass fiber decreases appreciably 

when subjected to the action of water. It is bel ieved that this is a 

result of stripping i.e., displacement of size coupling by water at the 

glass fiber surface. To assess the tendency of a given adsorbent to 

stripping, Hallberg (55) studied the process of stripping taking place in 

the capillary structure of the bituminous mixtures and showed that the 
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quantity called the adhesion tension y - y ,, where y and y . are 
' 'sw 'sbr ' sw ' sb 

solid-water and solid-binder interfacial tensions, respectively, is the 

driving force for adhesion i.e., the reverse process of stripping. 

Demi re 1 and EntlstUn (33) calculated the adhesion tension from the adsorp­

tion data. The adhesion tension is given by 

"Vsw - (34) 

where A F and aF , are the free energies of wetting of the same solid by 
w b 

water and hydrocarbon, respectively. This quantity has in fact a funda­

mental importance. It is the free energy change accompanying stripping. 

Therefore, it should measure the competition between water and binder for 

covering the solid surface and define the state of equilibrium whenever 

attained. This free energy change corresponds to the displacement of 

binder in the capillaries and its joining the bulk of the binder. 

Adsorption Kinetics 

in most physico-chemical processes the study of adsorption can be 

divided into two parts: thermodynamics as already described and kinetics. 

For an adsorbent surface where mechanical adhesion is important the rate 

of wetting (adsorption rate) may be a determining factor. The adsorption 

process consists of five distinct steps: 

1. migration of the molecule to the surface, 

2. adsorption of the molecule, 

3. movement of the molecule along the surface, 

4. desorption of the molecule, and 

5. migration of the molecule away from the surface. 
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Apparently steps two and four are very rapid (in the order of 10 ^ ^ sec. 

Therefore the kinetics of adsorption and desorption steps may be immeasur­

ably fast, McBain (84) in 1919 wrote: 

True adsorption is nearly instantaneous. Any 
lag, at present, can be accounted for by the 
time required for the dissipation of the heat 
evolved, or the comparative inaccessbi1ity of a 
portion of the surface of an adsorbing medium. 

Therefore, the measured overall adsorption must be accounted for by the 

other steps—by migration of the molecule to the surface and motion of 

the molecule along the surface. Since almost the entire surface of a good 

adsorbent is internal, the motion of the molecule to the surface will be 

affected by pore size, pore length, and effective pore size after adsorp­

tion has taken place. In other words the treatment of adsorption kinetics 

is similar to a diffusion problem corresponding to diffusion into a pore. 

Theories of adsorption rates based upon diffusion have been developed 

by McBain (83), DamkGhler (28), Wicke (123) and Barrer (10). An equation 

for the rate of adsorption on a free surface developed by Langmuir serves 

as the starting point for diffusion analysis (77). The experimentally ob­

served rate is equal to the difference between the rates of condensation 

on the surface and evaporation from the surface. At constant pressure, 

—^ (1 - G) - kg 8 (35) 

where 0 is the fraction of the surface covered by the adsorbed gas, and 

k ^  a n d  k ^  a r e  r a t e  c o n s t a n t s .  I n t e g r a t i n g ,  w i t h  b o u n d a r y  c o n d i t i o n s  8 = 0  

when t = 0, gives; 
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0 = [ 1 - "*• (36) 
+ kg 

when t = ", 0 = 0g where 0^ is the fraction of the surface covered at 

equilibrium. This gives the relationship 

from which it follows that 

0 = 0^(1 - e (38) 

Ve 
where k = k, + k,. Because 0 = V/V and 0 = — we can write 

1 z m e V 
m 

V = V^(l - e ^^), or (39) 

V - V = (4°) 
e 

here V is the volume adsorbed at saturation, V is the volume adsorbed at 
m 

time, t, and V^ is the volume adsorbed at equilibrium: Plotting the first 

term versus time should give a straight line. 

Adsorption on the walls of a capillary reduces the effective diameter 

of the capillary. The rate of adsorption increases with pressure, but the 

effect of reduction in the capillary diameter usually overcomes the effect 

of increased pressure. Therefore, capillarity affects the simple Langmuir 

adsorption process. 

Bangham and Sever (9) expressed the rate of capillary condensation 

in a gas-glass system by ^ 

V _ V = kt'/* . (41) 
e 
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They concluded that the long continued sorption of gases by glass was an 

absorption rather than an adsorption process. The amount of gas taken up 

was many times greater than that required for a complete monolayer on the 

glass surface. Some of the tests required weeks or months to reach com­

plete equilibrium. This sort of behavior I s not associated with adsorp­

tion process. It seems probable that capillary condensation and diffusion 

are responsible for the slow process. 

Infrared Absorption Spectrophotometry 

The methods of investigation of adsorption phenomena described so far 

give no direct information about the changes produced in the molecules by 

adsorption forces. 

Infrared spectroscopy has been found of the greatest value in the 

structural analysis of molecules. Its application to the study of surface 

chemistry has provided one of the most direct means of observing the inter­

actions and perturbations that occur at the surface during adsorption, and 

of determining the structure of the adsorbed species (79). Infrared 

spectra give direct information on molecular vibrations and changes in the 

spectra show the effect of the surroundings on the molecule. Under suit­

able conditions, the shapes of the vibration bands are affected by the 

rotation of the molecule as a whole, and thus they give information on the 

rotational motions of the molecules. When a molecule is adsorbed, the 

surface forces cause a change in the symmetry and therefore in vibrations 

of the molecule, and any quantitative measure of this change can be 

directly related to the nature of the adsorption. 
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If the molecule is adsorbed physically, it is subjected only to weak 

intermolecular forces of the van der Waal s type and thus the symmetry it 

possesses in gas phase is only slightly perturbed. Accordingly, the 

infrared spectrum is altered only slightly, and small frequency shifts are 

observed. During the chemisorption process, however, the symmetry of the 

adsorbed species is completely different from that of the gaseous molecule. 

The surface bond is very strong, and the adsorption may be dissociative 

in nature, in this case, a complete new infrared spectrum is observed, 

and band shifts and intensities are far removed from those of gaseous 

adsorbate. 

Folman and Yates (43) demonstrated the utility of infrared spectros­

copy in explaining adsorption phenomena. They found that the adsorption 

of gases upon a porous glass body had caused an initial contraction of the 

glass rod under investigation; this was followed by an expansion. The 

expansion-contraction effects were thought to be the result of a specific 

interaction between the adsorbate and the surface in particular through 

the hydroxy! groups on the surface. In other studies involving porous 

glass, Folman and Yates (44, 45) revealed that On groups exist on the 

surface of the glass even after degassing at 450°C. Kozirowski and Folman 

(75) showed that methyl at ion of the OH groups reduces the Young modulus of 

the porous glass by 10% and the bulk modulus by 22%, 

When the infrared investigation is extended to the study of surface 

problems, the adsorbent must be included in the infrared beam in addition 

to adsorbed molecules. This may lead to the loss of infrared radiation 

due to scattering and absorption by the opaque adsorbent, making 
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transmission techniques almost useless. Fahrenfort (42) was first to 

propose and develop the internal reflection spectroscopy utilizing a 

single reflection for measuring the spectra of bulk materials which could 

not easily be prepared for conventional measurements (Figure 3a). Harrick 

(60) proposed and developed internal reflection spectroscopy techniques 

utilizing multiple reflections, for studying surfaces and thin films (see 

Figure 3b). 

Internal reflection spectroscopy technique consists of recording the 

optical spectrum of a sample material in contact with an optically denser 

but transparent medium (prism) and then measuring the wavelength dependence 

of the reflectivity of the interface. As shown in Figure 3a the light 

is first introduced into the denser medium. In the study of adsorption 

radiation from within the adsorbent at angles exceeding the critical angle 

at the surface, will be totally reflected through the denser material. The 

infrared beam will still be totally reflected when the surface of the 

adsorbent is covered with a substance of lower refractive index, provided 

the frequency of the radiation does not correspond to an absorption fre­

quency of the adsorbed material. When this happens, radiation will be 

absorbed and a spectrum closely resembling a normal transmission spectrum 

of the adsorbate will be obtained. In this technique the reflectivity is 

a measure of the interaction of the evanescent wave with the sample 

material and the resulting spectrum is also a characteristic of the sample 

material. Increasing the number of internal reflections serves to increase 

the chance of the interacting with a point of contact (see Figure 3b), the 
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PRISM 
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(b) 

SAMPLE 
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Figure 3. Internal reflection effects: 
reflection and (b) multiple 

(a) Single 
reflect ion 
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total effect being identical with increasing the sample thickness in 

transmission spectroscopy. 
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MATERIALS 

Fîberglas-E 

The Fiberglas-E was provided as the cleanest available, treated with 

deionized water without protective coating by research laboratories of 

Owens-Corning Fiberglas Corporation. Fibers are ordinarily treated with 

sizing agents at the time of formation. E-glass which is used for such 

purposes as textile yarn, reinforcement of plastics, and filament winding, 

has high tensile strength and high modulus of elasticity, but poor acid 

resistance. According to the producer, it is composed of a random net­

work of various vitreous oxides—mainly, silica. Its chemical composition, 

bond strength and durability are shown in Table 2. SiOg, AlgO^ and BgO^ 

which possess high single bond strength—above 89 Kcal, are the glass 

formers which incidently have high viscosity and low thermal expansibility. 

The rest of the constituents which are called the glass modifiers are 

used to control workability, durability and probability of devitrifica­

tion. The very small alkali content is to prevent excessive destruction 

weathering when exposed to atmospheric moisture. Relative functions of 

glass-making oxides in Fiberglas-E can be best recognized as shown in 

Figure 4. 

The expanding technology of glass fibre was primarily prompted by the 

discovery that glass wool and its products are excellent thermal, acoustic 

insulating materials in addition to their highest strength to weight ratios 

if not weathered. 

Selected physical properties of E-glass fiber are summarized in 
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Table 2. Chemical composition, bond strength and durability of Fiberglas-

E (6) 

Constituent Ed (Kcal)^*^ Coordination No.^ f^(Kcal)^'^ Wt, % 

SiOg 424 4 106 54.0 

AI2O3 402 4 100 15.0 

CaO 257 8 32 17.3 

MgO 222 6 37 5.0 

NagO 120 6 20 0.5 

B2O3 356 4 89 8.0 

Fo 0.2 

Reagent*^ Wt, % loss 

Water 1.1 

0.02N H^SO^ 6.8 

O.OIN NaOH 3.5 

^Dissociation energies. 

^Based on the data of Rawson (102, p. 24-25). 

''Single bond energies. 

^One gram of fiber boiled in 300 cc of the indicated solution for 
one hour. 

Table 3- One of these properties, strengths of fiber glass deserve most 

attention. The strength of glass fiber is enormous when the surface is 

pristine. Glass usually fails in tension, showing brittle, conchoidal 
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Table 3. The physical properties of E-glass fiber (26) 

Properties Unit Value 

Thermal expansion from 0-300°C 10 ^/°C 60 

Softening point °C 830 

Young's modulus psi x 10^ 10.5 

Dielectric constant at 20°C 6.4 

Refractive index at sodium D line 1.548 

Density gm/cm^ 2.60 

Strength psi 

Protected in vacuum up to 2,000,000 

In air 250,000 

In plastic 150,000 

"Theoretic strength of untreated glass fiber = 1,000,000 -
4,000,000 psi. 

fracture normally originating at a surface flaw. Because of the tendency 

of the glass surface to develop stress-concentrating flaws, there is a 

strong dependence of glass strength on the surface area of the sample 

under test. Since the stress concentration varies inversely with the 

square root of the depth of the flaw, the limited flaw depth possible with 

fine fibers can also explain high measured strengths obtained (113, p. 83). 

Reactions with the atmosphere cause rapid weakening by one or two orders 

of magnitude. In glass-reinforced plastics, the organic matrix binds 
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glass fibers together and protects their surfaces to produce the highest 

strength-to-weight ratio available in commercial materials. 

Distilled Water 

The distilled water used as the adsorbate was obtained from a steam 

operated SLH-2 Barnstead still which produces, when fresh, practically 

carbon dioxide free distilled water with a pH approaching 7. For the 

adsorption experiments, this distilled water was triple distilled just be­

fore introducing into the apparatus. The purity of the distilled water 

used was verified qualitatively by an infrared spectrum using a Beckmen 

IR-4 spectrophotometer as shown in Figure 5. 

Benzene 

The benzene used was purified by 4A linde molecular sieve and stored 

over sodium wire prior to adsorption experiments. It was obtained through 

the courtesy of Dr. Thomas J. Barton, Assistant Professor of Chemistry, 

Iowa State University, Ames, iowa. The purity of the benzene used has 

also been verified qualitatively by infrared absorption spectrophotometry 

as shown in Figure 6. 

Mercury 

The C.P. grade triple distilled mercury was used in the mercury 

diffusion pump and manometers. 
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METHODS OF INVESTIGATION 

The adsorption isotherms and adsorption rates were determined by the 

gravimetric method (18). The infrared absorption spectrophotometry was 

conducted using the vacuum internal reflection technique (60). 

Adsorption Apparatus 

The adsorption apparatus was constructed and used for earlier in­

vestigation on calcium montmori1lonite - H2O system (110), Some modifi­

cations were made in the method of pressure readout. 

The apparatus. Figures 7 and 8, consisted of a Cahn RG electrobalance 

system comprised of a beam balance (Mb), control unit (BC), and vacuum 

flask (VC), connected to a Sargent model SR recorder (R). The electro-

balance coupled with the automatic recorder was used to measure the sample 

weight to microgram sensitivity. Changes in the sample weight cause the 

beam to deflect momentarily; this motion changes the phototube current 

which is amplified and applied to the coil attached to the beam. The coil 

is in a magnetic field, so the current passing through it exerts a moment 

on the beam, restoring it to balance. The current is an exact measure of 

the sample weight. A signal is sent to the control unit where it is 

amplified and the final signal is fed to the automatic recorder. The 

instrument was calibrated prior to the test, and a buoyance correction was 

applied. Room temperature was maintained at 22 + 0.25°C throughout the 

investigation while the experiment was in progress. 

A capacitance manometer (CM) coupled with a pressure sensing head (SH) 

was used to avoid mercury contamination and to maintain a pure adsorbent-
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Figure 7. Schematic layout of adsorption apparatus 
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adsorbate system. It operated as a null indicator for system pressure. 

The true pressure was read from the mercury manometer (MM) with a vernier 

micrometer slide cathotometer (Ca). The pressures read to one micron of 

mercury. 

The vacuum train was a portable unit consisting of a fore pump (MPI), 

an air-cooled oil diffusion pump (OOP), a liquid nitrogen cold trap (LNCT) 

and a Cenco vacuum discharge gauge (DGC), all mounted on a rolling cart. 

The rotary mechanical fore pump and the VMF oil diffusion pump and a 

liquid nitrogen trap provided a high vacuum of 10 ^ mm of mercury. F1 ex­

pand bellows were connected wherever vibration could be transmitted, A 

cadmium-nitrogen cold trap (CNCT) was used in the manometer system to con­

dense water, mercury, and oil vapors to prevent contamination of the 

capacitance manometer and to achieve a pure high-vacuum system in the 

reference leg of the mercury manometer. 

The sample (S) was suspended from an arm of the microbalance into a 

pyrex glass hang-down tube (HT) which was immersed in the constant tempera­

ture bath (CTWB). Water or benzene was distilled into the system from a 

mercury sealed adsorbate reservoir (AR) which was also immersed in the 

constant temperature bath. The immersed heaters (H) - a continuous heater, 

and an intermittent electronic relay circuit heater, were two 100-watt 

light bulbs with variable transformer voltage control. A thermal regula­

tor (Tr) with an "All Temp" cooler (Co) or a tap water cooling coil, con­

trolled the bath to maintain the adsorption temperature. The variation in 

the thermoregulated temperature was not more than + 0.01°C throughout the 

entire testing period and was + 0.002°C when readings were taken with a 



www.manaraa.com

37 

B e c k m a n  t h e r m o m e t e r  ( T ) .  T h e  B e c k m a n  t h e r m o m e t e r  w a s  c a l i b r a t e d  a g a i n s t  

a n  N . B . S .  c e r t i f i e d  t h e r m o m e t e r .  

All the valves used in the system were Teflon stem—viton "0" ring 

sealed Pyrex stopcocks purchased from the Scientific Glass Apparatus, Inc. 

IR Absorption Apparatus 

The IR absorption appara tus used was a Beckman IR-4 spectrophotometer 

compatible with a Wilks model 38B evacuable reflectance attachment. The 

Beckman IR-4 spectrophotometer combines double-beam and double-monochroma-

tor coupled with collimating mirrors which act as order sorters and cancel 

most of the aberrations. Figure 9 shows the optical arrangement of the 

system. Radiation from the Nernst glower (N) is received by a single 

mirror (Ml) and split into sample and reference beams by the rotating 

sector wheel, CI. The beams are recombined by a second chopper, C2, 

synchronized with the first. After passage through the double monochroma-

tor (Pi, P2), the beam is condensed onto the thermocouple (T), which has a 

lens window. The amplified signal from the thermocouple positions the 

optical attenuator (A) in the radiation path so that the radiation from 

the reference and sample beams is equal in intensity. The position of 

the attenuator determines the position of the recorder pen. 

A Wilks model 38B evacuable multiple reflectance attachment was used 

as a sample cell in the spectrometer. Figure 10 shows the optical layout 

and the actual cell mounted in the Beckman IR-4 spectrophotometer. The 

body of the cell consists of a stainless steel cylinder. The internal 

reflection element, KRS-5, is mounted in a stainless steel block suspended 
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from the cylinder lid. The block was tapped through the lid to accept Iwo 

85 watt Hotwatt heaters and a thermocouple well between the heaters. A 

high vacuum seal between the lid and cell body was accomplished by com­

pressing a Viton "0" ring between the flat of the lid and the rim of the 

cell. The infrared windows, made of KRS-5j are 1.5 cm diameter plugs with 

a 2.5 mm flat flange; the vacuum seal is made also with Viton "0" rings. 

The window-plugs protrude into the cell and nearly contact the internal 

reflecting element. This design makes it possible to record the spectrum 

of molecules adsorbed on the sample surface which contact intimately the 

internal reflecting crystal and is in equilibrium with gas phase without 

interference of infrared absorption by the gas phase. The available cell 

used restricted the choice of angle of internal reflection to 45°. 

Figure 11 shows the complete schematic layout of the absorption appara­

tus. The apparatus consisted of a Beckman IR-4 spectrophotometer Sp, sam­

ple compartment where the vacuum chamber was located, the vapor source AR 

connected to a vacuum train. The vacuum train was a portable unit con­

sisting of a fore pump MP, a Cenco water-cooled oil diffusion pump OOP, a 

liquid nitrogen cold trap LNCT and a Cenco vacuum discharge gauge DGC, all 

mounted on a rolling cart. The rotary mechanical pump and the Cenco oil 

-6 
diffusion pump provided a high vacuum of 10 mm of mercury. A cathotome-

ter Ca was used to read the pressure from the mercury manometer MM. The 

pressures are accurate to + 0.02 mm. A double cadmium trap was used to 

trap mercury vapor from the manometer. All the valves except one, a Hoke 

packless valve, used in the system were Teflon stem-viton "0" ring seated 

Pyrex stopcocks purchased from the Scientific Glass Apparatus, Inc. 
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The room temperature was maintained at 27 + 2°C throughout the 

investigation. 

Prelimi maries 

Meniscus correction to mercury 1 eve1 s In the manometer 

The mercury levels in each limb of the manometers for both the ad­

sorption apparatus and the IR absorption apparatus were corrected for 

capillary depression of the apex of the mercury columns. After the in­

side diameter of the manometer limbs was determined, data from the In­

ternational Critical Tables (93) were used to construct graphs of apex 

depression versus meniscus height. In case of diameter larger than 14 mm, 

the equation empirically derived by Huang et al. (68) was used to con­

struct the calibration graph (Figure 12). The equation which reads 

h = [(0.29367 - 0.42325) Ah^ + 0.225^3 - 0.325y^ + 0.009Y + 

0.1306] ——J 3 produces all the data from the International 
Ah + 7 

Critical Tables, and it can be used for almost any size of manometer. The 

meniscus height was measured for each mercury level and the level reading 

corrected by adding the corresponding apex depression. 

Gravity and temperature correction for manometers 

Vapor pressure determinations were converted to the standard scale by 

the relationship: h^g^o^ = hgo, where h^ is the corrected manometer reading 

2 
g^ and g are standard, and local acceleration of gravity in cm/sec , and 

and p are the density of mercury at 0°C and at the test temperature in 
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Figure 12. Capillary depression of the apex of a mercurial column 
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•} 2 
gm/cm , respectively. Values of g^ = 980.665 cm/sec , and >3.5951 

gm/cm^ were used. Values of p at test temperatures were obtained from the 

literature (122). The local value of the acceleration of gravity is 

2 
g = 980.297 cm/sec (32). When these values are substituted in the above 

relationship, the following correction value was obtained: 

h^ = 0.07535 Ph (42) 

for both the adsorption apparatus and the absorption apparatus. 

Elect robalance calibrat ion 

The electrobalance was calibrated based on the instruction manual 

supplied by the Cahn Instrument Company. The inert weight of 304 mg was 

made of 1 mm diameter platinum wire. After the calibration, the sample 

weight = substitution weight + mass dial reading + recorder reading. 

Buoyancy correction to the electrobalance 

The electrobalance readings were corrected for buoyancy force by 

running blank tests at various ranges of pressure. The weight used for 

blank tests was also made of platinum wire making the corrections for the 

balance mechanism alone possible. Figure 13 shows the calibration chart 

for buoyance correction for the balance. The weights measured were, thus, 

corrected accordingly. 

Berenyi ' s correction factor jf 

The Berenyi's correction factor f was calculated using the ranges in 

Table I for each test temperature and pressure. They are presented in 

Figures 14 and 15 for water vapor and benzene vapor, respectively, and were 

used to calculate the correct adsorption volume according to Equation 5. 
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Procedures 

Determination of sorption isotherms 

The sample in fiber form was prepared by wrapping about 280 mg of E-

glass into a bundle with a nichromium wire. Other samples were ground in 

an acid cleaned ceramic vial with a SPEX No. 8000 Mixer/Mill and screened 

with SPEX nylon sieves to pass No. 200 and No. 400 sieves. A third cate­

gory of sample was collected between No. 200 and No. 325 sieves after 

grinding. Just before testing, samples were heated to 110°C for 24 hours 

and cooled in a desiccator for one day. They were then Introduced into the 

balance either in loose powder or compressed pellet or fiber form. 

The sample and the system were evacuated for two weeks at room 

temperature which was maintained at 22°C throughout the investigation. 

The oil diffusion pump was started when the system reached a vacuum of 

10 ^ Torr; liquid nitrogen was introduced into the cold trap after the 

pressure reached 5x10 ^ Torr. The hangdown tube containing the sample, 

and all parts of the adsorption system except the microbalance, were 

heated for 12 hours to about 300°C with a Bunsen burner. The sample was 

heated occasionally during degassing with an infrared heater. The 

adsorbate reservoir (either contains triple distilled water or purified 

benzene) was also degassed by pumping during the period of evacuation 

after the adsorbate had been frozen in liquid nitrogen. When the system 

reached 10 ^ Torr (determined with a calibrated discharge gauge) the 

pumping valve was closed for two hours to determine if degassing was 

complete. The part of the system connected to the capacitance manometer 



www.manaraa.com

49 

was also pumped down at the same time. Finally the system was sealed and 

the capacitance manometer was calibrated. A reading of the automatic 

recorder was taken to determine the equilibrium weight in milligrams. 

Water vapor or benzene vapor was transferred into the system from the 

adsorbate reservoir for the range of p/p^ = 0 to p/p^ = 1. The amount of 

adsorbate adsorbed on the sample was automatically registered on the re­

corder, and the actual vapor pressure was obtained by zeroing the capaci­

tance manometer and a reading of the mercury manometer with the cathotome-

ter. System equilibrium was attained when there was no increase in sample 

weight and no drop of system pressure. It was found that the equilibrium 

condition of adsorption on the sample in most cases was attained in about 

three to four hours after introduction of the vapor. Because of hetero­

geneous capillary condensation and slow glass wall adsorption the system 

sometimes required 24 hours to reach equilibrium. To eliminate uncertain­

ties at least 24 hours were allowed between the vapor transfers. Readings 

were taken intermittently between four and eight hours and immediately 

prior to an additional transfer of vapor. in this manner, more and more 

vapor was introduced into the adsorption chamber until the saturation was 

reached. 

In the vicinity of saturation the dew point technique was used to 

insure complete saturation. The high vacuum valve VI was left open and 

after there was no additional rise in weight of the sample, a small amount 

of ice-water was introduced against the side of the hangdown tube contain­

ing the sample. This produced a small amount of dew on the hangdown tube, 

and the time for the dew to disappear was observed. At pressures below 
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saturation the dew disappeared rapidly, whereas at saturation the time 

of disappearance sharply increased. The weight as recorded on the auto­

matic recorder showed very little change in the weight of the sample, 

while the dew persisted on the side of the tube. 

The desorption process was performed by cooling the adsorbate reser­

voir by means of a dewar flask containing ice water and opening valve Vl 

to distill small amounts of adsorbate into the adsorbate reservoir. Thus 

the desorption isotherm was obtained by condensing more and more vapor 

back into the adsorbate reservoir. This condensation process was per­

formed by cooling with ice water to a p/p^ of about 0.15 then liquid 

nitrogen was used to bring p/p^ to zero. For the final removal of ad­

sorbed vapor, the sample was pumped by using the vacuum train. As will be 

shown later, the pumping could not remove all of the adsorbate from E-

glass; however, it could be and was removed by an infrared heater. 

Detemination of sorption rates 

The same E-glass sample used in the adsorption isotherm determina­

tions was used to determine the sorption rates at various temperatures 

using water vapor as adsorbate. After each balance calibration and evacu­

ation, two different sample treatments were performed; one with infrared 

activated heating, and another without infrared activated heating. After 

this, valve Vl was opened and left open, and the weight increases due to 

adsorption were registered on the automatic recorder. Since the time for 

adsorption equilibrium was more than six hours, the recorder chart speed 

was selected to be one inch per hour. 
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For desorption rate study the process was reversed by freezing the 

adsorbate in the reservoir AR with liquid nitrogen. After the adsorbate 

reached liquid nitrogen temperature, valve VI was opened, and the weights 

decreased due to desorption were automatically registered on the recorder. 

When desorption reached equilibrium, valve VI was closed. The system was 

further evacuated by the vacuum train. 

During the experiment, the thermostat, S (Figure 7) temperature 

was kept at the desired value (18 to 20°C) while the vacuum chamber, VC, 

was kept at room temperature (22°C). 

Determination of infrared spectra 

Three different forms of E-glass were used in obtaining infrared 

spectra. Firstly, the fiber was cut to the KRS-5 element longitudinal 

size and was packed on the two faces of the element. Secondly, the fiber 

was simply wrapped around the KRS-5 element. Thirdly, E-glass powder 

(-400 mesh) was spread evenly over the two faces of the element. The 

sample was then tightened in place and was placed in the vacuum chamber. 

The system was then sealed and evacuation was applied. The liquid nitro­

gen baths were placed around the adsorbate reservoir and cold trap. The 

-3 
diffusion p u m p  was turned on when the system pressure reached 10 Torr. 

The adsorbate was degassed by repeated thawing, freezing and evacuation. 

Then infrared spectra were determined at various p/p^ values ranging 

from zero to 1 by using double beam and single beam operations. Patience 

is needed in focusing the reflection beam going through the internal re­

flectance element. 
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An infrared lamp was used to activate the system. At least two days 

of evacuation and one day of heating were allowed. One spectrum of E-

glass under vacuum was taken prior to each adsorption cycle. The vapor 

was introduced from the adsorbate reservoir; a spectrum with SB and DB 

operations was subsequently taken. Pressure readings as well as room 

temperature were registered. More and more vapor was introduced in 

increments into the chamber and spectra determined until the saturation 

was reached. The desorption was performed in a manner similar to that 

used in the adsorption isotherm study by condensing the adsorbate into 

the reservoir with liquid nitrogen. The spectrum was taken at each 

desorption stage until the system reached vacuum again. The experiment 

was then terminated, and the adsorbate was changed for the next experiment. 

Errors 

Experimental error in determining p/p^ 

The error in p/p^ for the adsorption isotherm study was determined 

as follows: The readings of the mercury manometer were made with a 

cathotometer. the reproducibility of which is + 0.005 mm. The maximum 

error in the value of p^ due to temperature variations was estimated to 

be 0.02 mm. The error in p/p^ was obtained through the use of the 

following relationship (117, p. 20): 
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where 6 —^ 3 6P and 6AP are the errors in p/p^j P^ and the pressure 
Po 

difference, respectively. The error in p/p^ calculated by this expres­

sion was found to be + 0.0004 for all pressure ranges. 

The error in p/p^ for the infrared apparatus was also determined 

from the above equation. The readings of the cathotometer were found to 

be reproducible within + 0.02 mm, and the maximum error in the value of 

P/Pg due to temperature variation was estimated to be + 0.04 mm for all 

pressure ranges. 

Experimental error in determininq £ 

The automatic recording device had a reliability of 0.05% at the 

range selected. The error in grams of vapor adsorbed per gram of E-g1ass 

specimen was estimated to be a maximum of + 3x10 ^ gm/gm as determined 

from an average of five series of 20 recordings at selected equilibrium 

conditions. 
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Experimental error in determining dq/dt 

The errors in determining sorption rate, dq/dt were determined 

according to Topping (117) as follows: 

dq dq^ (1 + Aq) dq^ ^ 

~dr~ = "dT (1 + At) = di^ (1 - At + At + ...) 

dq 
(1 + Aq - At). (45) 

Thus the fractional error in dq/dt is approximately the difference of the 

fractional errors in q and t. 

From the preceding discussion, AA is about + 3x10 ^ gm/gm, and At 

is found to be about + 0.01 min./min. Hence errors in dq/dt At + Aq = 

-6 
+ 0.01 ^ 3x 10 0.01. 

Experimental error in determining absorbance A 

The error in determining absorbance A using Beckman i4 spectro­

photometer are from the noises which are the keys to instrumental limits 

on precision. One of them is called source noise in which AI cel. How­

ever this source of error is very small in Beckman IR 4 spectrometer. The 

other source of error is called Johnson noise which comes from the random 

motion of electrons in conductors in which AI = constant. Since 

A = loge 'o/l 

- (log e) 
dA/A = ' 

A 

-0.434 
dl/l (46) 
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Substituting Beer's Law, I = 1^10 where a is absorptivity, b is 

path length, c is concentration and A = abc into the above equation, 

we obtain 

AA/A = -0.434 (AI/!q) (1/A10'^). (47) 

To find A for (AA/A)^.^, we differentiate the above equation in respect 

to A: 

. + 0.434 h,/l 
dA ° A A 

and set it equal to zero. So, A = 0.4343 or %T = 36.8 for (AA/A)^.^. 

Using Al/I = 0.005 for the instrument used, the following table 

gives the limit of precision in determining absorbance. 

Table 4. Limit of precision in determining absorbance A 

%T A AA/A X 100, % 

95 0.022 + 10.2 

90 0.046 + 4.72 

70 0.155 + 2.00 

40 0.399 + 1.36 

10 1.000 + 2.17 

2 1.699 + 6.38 

Fi gure 16 shows the relative error, AA/A, plotted against A. As it 

can be seen from the Figure 16, one wouid not put the recording needle 

up to 100% T or down close to 0% T in order to prevent great uncertainty 

i n determi ni ng A. 
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Figure 16. Relative error, AA/A, plotted against A 



www.manaraa.com

57 

PRESENTATION AND DISCUSSION OF RESULTS 

Sorption Isotherms 

The data for adsorption and desorption and the values of the 

functions for evaluation of Langmuir parameters, BET parameters and energy 

changes are presented in the Appendix (see Tables 20, 21, 22 and 23, 

for the water vapor sorption on E-glass fiber. Tables 2k and 25 for the 

water vapor sorption on E-glass powder. Tables 26, 27, 28, 29, 30 and 

31 for the water vapor sorption on E-glass pellet and Tables 32, 33 

and 34 for the benzene vapor sorption on E-glass pellet). The amount of 

vapor adsorbed, q, is expressed in gm per gm of the E-glass. The relative 

vapor pressure, p/p^j is unit less and is expressed in a fraction. In­

cluded in the Tables also are the values of the function ^^^o for the 

evaluation of the Langmuir parameters, the function P^Po for evalu-
q(i-p/Po) 

ation of the BET parameters, and the function used to determine the 

free surface energy change. 

The water sorption isotherms on various forms of E-glass at 6.00°C, 

10.00°C and 20.00°C were obtained. Figure 17 is a plot of water vapor-E-

glass sorption isotherms. The isotherms show equilibrium moisture con­

tents for the E-glass as the relative water vapor pressure increases or 

decreases. In the low relative pressure region, the isotherm is concave 

to the pressure axis, whereas in the high relative pressure region it is 

convex to the pressure axis. In an intermediate relative pressure range 

the isotherm exhibits a somewhat linear portion, the length and slope of 

which Brunauer (18) states is dependent on the adsorbent, the adsorbate, 

and the temperature selected for the investigation. In a series of 
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studies on the water vapor adsorption on clays, Orchiston (94, 95) points 

out that the multimolecular adsorption occurs on localized sites rather 

than being due to the formation of a mobile adsorbed layer. Using the 

Orchiston approach, the concave section of the isotherms explains the 

completion of the first layer on these sites. The convex section of the 

isotherm shows a running together of the cluster of water molecules a-

round the active sites. In Figure 17 the weight adsorbed in the initial 

portions of the isotherms are nearly identical. At higher p/p^ values, 

because of the greater exposed surface area of the pulverized powder, the 

weight adsorbed by the powdered specimens is greater than the fiber spec­

imens. The capillary spaces become filled with water as p/p^ approaches 

1. Thus the weight adsorbed increases rapidly, reaching a limiting value 

corresponding to BET type IV isotherms (3, P. 584). The difference in the 

isotherms as well as in adsorbed weight is presumbly due to the difference 

in the average pore radius and the pore radii distributions. 

Permanent hysteresis was always observed on desorption. In no case 

did the hysteresis loop come back to the origin. It is believed that the 

first monolayer of water was adsorbed so strongly that it formed OH bonds 

on the E-glass surface; thus it cannot be dehydrated simply by pumping. 

However, the samples could be dehydrated by infrared heating to close the 

hysteresis loop. This behavior has been reported by Razouk and his co­

workers (103), Mikhail and Shebl (90) and Eqorov et al. (38) in their in­

vestigation of adsorption of water vapor on glass surfaces, silica and 

silica gels, respectively. According to Razouk and Salem (103), the 

adsorption of water vapor on glass surface is due partly to a chemisorbed 

monolayer which can not be removed by pumping at room temperature and 
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partly to a physically adsorbed film which is estimated to be one mole­

cule thick at 0.2 relative pressure and two molecules think at 0.8 rela­

tive pressure. 

Physical adsorption on the surface of the adsorbent is usually 

completely reversible, whereas the hysteresis shown by the desorption 

branch may or may not be reversible. The data of the present study also 

suggest that the adsorption, rather than desorption branch is the true 

equilibrium curve. 

According to Brunauer (18, p. 409) the adsorption process most prob­

ably causes a change in the pore volume which may be either reversible 

or irreversible. The pore volume change may result in different pore 

shapes. This may account for the differences between the successive ad­

sorption curves and in the specific surface areas as will be explained 

later. 

The first explanation for hysteresis was advanced by Zsigmondy (18, 

p. 394)c He assumed that during adsorption the vapor does not wet the 

walls of the capillaries in which adsorption takes place. As the ad­

sorption reaches saturation, the impurities are displaced and complete 

wetting takes place at saturation. 

The hysteresis due to trapped gases or adsorbed water molecules 

should be eliminated or reduced by effective evacuation of the system 

prior to investigation. However, pore size, its distribution and bond 

formation probably remain as the chief causes of hysteresis. 

McBain (85) proposed the "ink bottle" theory of hysteresis. He points 

out that as p/p^ increases, the condensed absorbate will occupy the nar­
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rowest cross-section and will extend to wider cross-section only as p/p^ 

increases. When the vapor is sufficiently close to saturation, the pore 

will be completely filled. On desorption, no evaporation will occur from 

filled pores until the relative vapor pressure has fallen to a value suf­

ficient to cause evaporation from the largest orifice or passage leading 

to the larger enclosed cavity. The true equilibrium, according to this 

hypothesis, corresponds to the adsorption points since the liquid, con­

tained in the body of the pore, is in equilibrium with the vapor only on 

the adsorption side. This is also in agreement with the "open pore" 

theory proposed by Foster (46). 

Figure 18 presents a plot of benzene vapor-E-glass pellet adsorption 

isotherms. The shape of the curves looks the same as that of water ad­

sorption isotherms. However, less affinity is found for benzene ad­

sorption than for water adsorption. This is due to the stronger physical 

bonds formed with polar molecules on E-glass, i.e., HgO, which causes 

higher initial heat of adsorption (11, 73). This will be discussed later 

in this report. 

Several interesting facts concerning the rate of adsorption were ob­

served during the investigation. The spontaneity and instantaneousness 

of adsorption was indicated by the automatic recording device attached 

to the electrobalance. As soon as a small increment of adsorbate vapor 

entered the system, the response of the pen was immediate. At low rela­

tive pressures, the slope of the line described by the marking pen was 

very steep, and the slope decreased as the relative vapor pressure 

approached saturation. During desorption studies, this trend was 
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reversed at high relative vapor pressures. These phenomena have been ob­

served by various investigators (32, 104, 110} on the studies of water 

vapor-montmori1lonite systems. 

If it is assumed that only a small fraction of the impinging vapor 

molecules are reflected back elastically by the solid, the rate of ad­

sorption on a free surface would be quite rapid. If, however, the ad­

sorbent contains long, very narrow pores and the vapor must diffuse in­

to them, the adsorption would take a longer time to reach equilibrium. 

If the incoming water molecules must displace previously adsorbed mole­

cules already there, the rate of adsorption may become very slow. In our 

studies, equilibrium was reached in four hours after introduction of vapor 

and six to eight hours after removal of vapor for adsorption and desorp-

tion respectively. The mechanism which causes these long sorption rates 

will be further discussed later in the report. 

Specific Surfaces 

The values of the BET function, v , tabulated in Tables 20, 
gii-p/pq/ 

22, 24, 26, 28, 30, 31, 32, 33 and 34 are plotted against the relative 

pressure, p/p^, in Figures 19 and 20 for the water vapor and the benzene 

vapor sorption on various forms of Fiberglas-E. 

Each of the plots in Figure 19 shows that a fairly straight 

line is obtained with sorption data in the p/p^ range of 0.01 to about 

0.25 for the water sorptions. But each of the plots in Figure 20 shows 

a straight line only in the p/p^ range of 0.01 to 0.15 for the benzene 

adsorption. Generally, BET will have a straight line region between 

p/p^ value of 0.05 to 0.30 (3, p. 583). 
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The surface areas were calculated from the slope and intercept of 

the BET curves in the range of 0 to 0.25 in the case of water adsorption 

and of 0 to 0.15 in the case of benzene adsorption using a water molecule 

2 
cross-section area of 10.8 A and a benzene molecule cross-section area 

2 
of 32.2 A  at the closest packed condition. Results a r e  l isted in Table 

5 using water vapor adsorption. Results for the benzene vapor adsorption 

are listed in Table 6. 

In case of water vapor adsorption, two determinations at different 

temperatures on the same fiber specimen were in agreement giving 1.21 

2 
m /gm. The 200-325 mesh powder fraction had slightly higher area. The 

400 mesh compressed powder, i.e., pellet, specimen was tested four times 

in succession. The specific surface increased 38% after the first ad-

2 
sorption desorption cycle to K95 m /gm and then became fairly stable at 

a value about 25% greater than the original area. 

Table 5. BET area determination of E-glass by adsorbing water vapor 

Sample Test 1 so- 14 2 
No. No. temp. q^xlO C S,m /gm Specimen treatment 

1 1 20.05 3.37 370 1.22 Fiber 

1 2 6.05 3.35 370 1.21 Fiber 

2 3 6.05 3.75 133 1.35 200-325 mesh powder 

3 4 10.06 3.95 133 1.42 400 mesh compressed 
powder 

3 5 19.99 5.39 93 1.95 400 mesh compressed 
powder 

3 6 19.99 4.72 106 1.71 400 mesh compressed 
powder 

3 7 19.99 4.95 101 1.78 400 mesh compressed 
powder 
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Table 6. BET area determination of E-glass by adsorbing benzene vapor 

Sample Test I so- ^ 
No. No. temp. q^xlO C S,m /gm Specimen treatment 

3 B1 19.86 3.39 14? 0.84 400 mesh pellet 

3 B2 18.00 2.52 198 0.63 400 mesh pellet 

3 83 18.00 2.10 238 0.52 400 mesh pel let 

The specific surface of the fiber determined by BET method is about 

ten times the specific surface calculated from the geometry of the fiber 

using a light microscope. (Figures 21 and 22 show pictures viewed from 

the end and from the side of the fiber. The calculation of the geometric 

fiber area is shown in the Appendix.) Surface roughness or porosity may 

be a factor in this anomaly. Chemical changes produced at the time of 

production by treating with water could cause an active surface. Water 

attack on freshly fractured surfaces could also occur on the first and 

subsequent sorption cycles on compressed samples. Weathering and corro­

sion of glass surface have well been recognized (109, p. 252). Glass 

fiber is attacked by atmospheric moisture adsorbed on the large surface 

area of the filament, alkalis pass from the glass to the water film 

forming an alkaline solution, which produces a secondary intensive de­

struction of the vitreous silicate. The fiber surface becomes hygro­

scopic and, after taking up more atmospheric moisture, electrically con­

ductive (120, p. 424). Surface destruction of glass fiber is basically 

the same as that of a window-pane or a glass beaker, and the difference 

is only in the much larger specific surface of the fiber. For this reason 
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Figure 21.  End v iew o f  F iberg las-E through Ze iss  Ul t raphot  I I  (M.P.  =  1000)  
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Figure 22,  S ide v iew o f  F lberg las-E through Zeiss  u l t raphot  I I  (M.P.  =  800)  
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the surface destructive process is more intensive on glass fiber than on 

ordinary flat glass. 

The leaching of glass with strong reagents like cleaning solution is 

well known to increase the surface area. Pli skin (98) showed that boil­

ing water leached 85% of the boron out of a thin film of Corning 7050 

borosilicate glass. The surface destruction was also found on the E-

glass surface after boiling in water (69, 28). 

In a recent study of glass fiber surfaces by electron microscopy and 

gas adsorption, Donnet et al. (35) were able to trace the surface cracks 

which had followed an helicoidal path, representing the minimum energy 

line on a leached E-glass fiber. According to them E-glass fiber 

2 
specific surface could reach 200 m /gm, if leached with 0.04% HF solution 

for 9 hours. 

Little variation in specific surface was found for the fiber sample 

between two adsorption experiments while larger differences occurred with 

powders. This may be attributed to the presence of freshly fractured sur­

faces in powdered specimens, and to the effect of compression on the sam­

ple. Compression of finely pulvirized fibers could have caused some weld­

ing and could seal or close the pores. Water adsorption and subsequent 

dehydration could make the isolated pores accessible - also causing an 

increase in apparent surface area on the second determination. 

Benzene adsorption on E-glass gave about half of the surface areas 

which were obtained from water adsorption (see Table 6). It may be 

assumed that portions of the micropores were sealed off and reduced by 

the adsorption of benzene vapor. The microstructures of glass have been 
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studied by various investigators (103, 38, 40). Razouk and Salem in 19^7 

(103) found that the real surface is about two to three times greater than 

the geometric surface in the case of water-washed glass and about ten to 

twenty times in the case of acid-treated glass. Egorov et al. (38) found 

2 2 
that the silica gel specific surface decreased from 695 m /gm to 178 m /gm 

when the heat treatment temperature was increased from 300°C to 900°C. 

According to Menzies (89), this was because the capillaries in the surfaces 

were sealed due to incipient fusion by heating glass. This sealing with 

modern day's understanding may be attributed to diffusion instead of in­

cipient fusion. In study of microporous structure of silica gel using 

various vapors, Mikhail and Shebl (90, 91) found that specific surface of 

2 
silica gels determined by water and nitrogen vapors was 796.8 m /gm while 

2 
benzene vapor gave specific surfaces either 438.0 or 721.0 m /gm depending 

on the benzene orientation on the surface. The former value was the re­

sult of vertical orientation and later value was the result of flat orienta­

tion. They also pointed out that in very small micropores the molecular 

area of benzene increased. They used 25 8^/molecule for vertical orienta­

tion and 42 8^/molecuIe for flat orientation. In small micropores the 

molecular area was as high as 84 /molecule. 

Surface Free Energy Change of Wetting 

The values of the function —^— versus p/p used to determine the 
P/PQ 

free energy change of wetting were plotted in Figures 23 and 24 for the 

water and benzene adsorption data, respectively. The free energy change 

of wetting was determined from the area under the curve (graphical inte­

gration of Equation 30). The results obtained are tabulated in Tables 7 
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and 8. The fibers have a lower surface free energy than the powdered 

specimens at the same temperature. Application of compression pressure 

seems to have no effect on the free energy change of wetting. This fact 

has been pointed out by Craig and his co-workers (27) on the investiga­

tion of the water adsorption on graphite. 

Table 7. Surface free energy change for the adsorption of water vapor 
on E-glass 

Sample 
No. 

Test 
No. 

1 so-
temp. 2^ m /gm 

6 ^ 2  
erg/m 

< z  
erg/m 

I 1 20.05 1.22 -246.85 319.6 

1 2 6.05 1.21 -235.02 309.8 

2 3 6.05 1.35 -241.22 315.9 

3 4 10.06 1.42 -244.52 318.7 

3 5 19.99 1.95 -253.69 325.4 

3 6 19.99 1.71 - -

3 7 19.99 1.78 - -

^Calculated based on Equation 31-

Table 8. Surface free energy change for the adsorption 
on E-glass pellet 

of benzene vapor 

Sample 
No. 

Test 
No. 

1 so-
temp. 

2/ 
m /gm erg/m 

<2 
erg/m 

3 bl 19.86 0.845 -72.36 101.2 

3 b3 18.00 0.523 -71.11 100.1 

^Calculated based on Equation 31. 

The surface free energy of wetting and the work of adhesion computed 

here are reasonable when compared with those for water and benzene on 
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Table 9. Comparison of surface free energy change and work of adhesion of different materials 
upon water adsorption 

Solid 

-AF 
/ 2 

erg/cm 
"/ 2 

erg/cm Temp. °C m^/gm Reference 

Na-montmor111 on 1 te 40.5 23 749 Demlrel (32) 

Ca-montmor11lonlte 76.6 23 751 Demlrel (32) 

Graphite 64 136 25 Boyd and Livingston (17) 

385 Harkins and Boyd (58) 

Silica (gel) 82.8 500 Bartel1 and Fu (12) 

Mercury 101 174 25 Boyd and Livingston (17) 

Tin 168 312 25 Loesser et al. (81) 

TlOg 196 340 25 Loesser et al. (81) 

640 Harkins and Boyd (58) 

300 370 25 Boyd and Livingston (17) 

SnOg 220 364 25 Loesser et al. (81) 

292 364 25 Boyd and Livingston (17) 

800 Harkins and Boyd (58) 

Calcite 264 25 0.92 Demlrel and Enlùsfùn (33) 

SlOg (Quartz) 316 388 25 Boyd and Livingston (17) 

72.0 Harkins and Boyd (58) 

CaFg 1170 Howard and Culbertson (66) 

PbS 2750 Howard and Culbertson (66) 
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Table 10. Comparison of surface free energy change and work of adhesion of different materials 
upon benzene adsorption 

-4^2 2 .  F 
Solid erg/cm erg/cm Temp. °C m /gm Reference 

siOg 81 no 

CaCO. 155 

M e r c u r y  119 148 

TiOg 85 114 

G r a p h i t e  7 6  9 6  

25 Boyd and Livingston (17) 

25 0.98 Demirel and Enustun (33) 

25 Boyd and Livingston (17) 

25 Boyd and Livingston (17) 

25 Boyd and Livingston (17) 
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various materials (Tables 9 and 10). E-g1ass has a larger surface free 

energy change when it adsorbs water vapor than montmor!llonite, graphite, 

silica gel and TiO^, but lower than calcite, Si02 (quartz), CaFg and PbS. 

The strong chemical bondings within the latter group contribute to this. 

Na-montmorillonite and Ca-montmorillonite swell upon adsorption of water, 

and thus reduce the free energy change. E-glass shows no similar swell­

ing during water adsorption as evidenced by the fact that there is no 

break in the spreading pressure (calculated from Equations 30 and 32b) 

versus relative humidity plots (Figures 25 and 26). 

it is important to note that at every p/p^ film pressure of benzene 

vapor on E-glass is only a fraction of that of water vapor on E-glass. 

Adsorption Energy Change and Microstructural Analysis 

As pointed out in Equation 30, the free energy change of adsorption 

may be expressed as: 

AF = - Mg- TO d(P/P^). (W) 

Fu and Bartell (47), studying the surface areas of porous adsorbents, 

evaluated this equation and found that the change in free energy could be 

expressed by the relationship: 

-Z6F = a(p/p^) ̂  (49) 

where -TAF is the decrease in the free energy per unit area, a and p are 

constants. When the values of -26F were plotted against p/p^ a curve 

consisting of two portions was obtained by these authors; each portion 

could be represented by Equation 49. For a given adsorbate-adsorbent 

system, a and p remain constant so long as there is no change in the 
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mechanism of adsorption. If changes in the mechanism of adsorption, such 

as capillary condensation or swelling occur, values of a and p change to 

another set of constant values. The change in slope of the -ZAP curve, 

observed by Fu and Bartel1 (47) was attributed to capillary condensation 

in the pores of the adsorbents. From the intersection of the two portions 

of the curve and from the proposed hypothetical process, they were able 

to derive an expression for the specific surface of rigid porous ad­

sorbents which did not involve assigning a molecular area to the ad-

sorbate. They tested their method with a variety of adsorbents and ad-

sorbates; the specific surfaces obtained were found to be in very good 

agreement with those determined by the BET nitrogen adsorption method. 

in the present study, the values of the integral p/p""^ (p/p^) 

for increasing increments of p/p^, up to and including the saturation 

point, were determined by graphical integration. This was done with both 

water and benzene adsorption data for Fiberglas-E. The values of -SAF 

obtained are presented in the Appendix-

Plots of log(-EAF) versus log(p/p^) are presented in Figures 27, 28 

and 29 for water and benzene adsorption runs. Each of the plots displays 

three straight line portions (implying equations of the type -EAF = 

a(p/p^)^ for various portions) rather than the two obtained by Fu and 

Bartel1. Above a p/p^ of about 0.05 a linear plot is obtained to a p/p^ 

of 0.41 for water adsorption and 0.18 for benzene adsorption. There is 

then a transition to another linear portion which continues to a p/p^ of 

about 0.90. This is followed by another linear portion up to saturation. 

The portions of the plots below p/p^ of about 0.05 are not strictly 
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l inear but breaks in the slopes of the plots can be observed in the p/p^ 

range from 0.025 to 0.05. This is in agreement with the observations of 

Fu and Bartell (47); they reported nonlinearity below p/p^ of 0.05 and 

attributed it to the decreased accuracy in determining q values at very 

low pressures. In their development they disregarded this portion of 

the plots since it was not required for the determination of the surface 

area of the adsorbents. 

Breaks in the slopes of log(-ZAF) vs. log p/p^ curves have been re­

ported in various investigations of swelling clays (105, 106). However, 

E-glass is believed to be non-swelling as discussed earlier. Instead, it 

was felt that an analysis similar to that of Fu and Bartell may be con­

structive. The microstructural analysis will now be possible using Fu 

and Bartell's method (here after it will be called FB method). If we 

consider that the first straight line is to fi l l the micropores (or 

microfissures), then the first intersection, at about p/p^ of 0.18 

to 0.41 is where the micropores are fil led up. in the second straight 

line region where very small amounts of adsorption occur as can be seen 

from the adsorption isotherm plots, external surfaces dominate the ad­

sorption action until the line reaches a point where capillary conden­

sation takes over. The intersection is then called Figure 30 

represents a typical curve of adsorption energy change for microstructural 

analysis. Fu and Bartell derived an equation in the form of the following 

equation for calculation of specific surface: 

-ZAF + ZAF 
2 = ^ , (50) 

^Iv 
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where Z is the specific surface, -EAF^ is the ordinate of intercept X^, 

and -EAF is the ordinate of intercept X . , of figure 30 and y , . ,  is the 
m mic LV 

surface tension of liquid adsorbate. With the same argument we can give 

the following for inflection point X : 
cap 

-ZAF + ZAF 

where is the portion of the specific surface beyond micropores in 

other words the external surface area, then 

 ̂ - ^cap • 

The analysis can be further developed to obtain the average pore size of 

the micropores, r^^^, by using the Kelvin equation: 

RTln(p/Pg) = -ZyV/r, (53) 

where y  is the surface tension of the adsorbate, V is the molar volume 

and r is the capillary radius. 

The values of specific surfaces and average pore sizes obtained are 

presented in Table 11. The surface areas obtained from FB method, Zpg, 

are found in good agreement with BET areas, Z^^^. However, Z^.^ seems to 

be greater than Z_„ for water as adsorbate, but this trend is reversed 
ob I 

when benzene is the adsorbate. It is interesting to note that the ex­

ternal surface area. Z , is in the order of the geometric area calcu-
cap' 

lated in the Appendix. High compression pressure applied to the pellet 

seems to be sealing off the micropores as reflected in decreasing Z^.^. 

It appears that subsequent water adsorptions on E-glass increase not only 
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Table II. Determination of specific surface areas based on FB method 

•Adsorbate 6 ' Iv 
erg/gm x 10 erg/gm x 10 erg/gm x 10 dyne/cm 

Water Fiber 1 20.05 2.979 2.010 2.800 72.75 

Fiber 2 6.05 2.837 1.835 2.610 74.80 

Powder 3 6.05 3.262 2.090 2.620 74.80 

Pellet 4 10.06 3.482 2.280 3.020 74.22 

Pellet 5 19.99 4.947 3.220 4.310 72.78 

Benzene Pellet Bl 19.86 O.6IO 0.389 0.559 31.73 

Pellet 83 18.00 0.372 0.239 0.321 31.74 

^Date based on CRC Chemistry and Physics Handbook (122). 
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Table 11» (Continued) 

2  
2 

| c a p  rb rb S a m p l e  

m  / g m  m  / g m  m  / g m  ( p / P o ) m  ( P / P Q) C  
A "  A "  

f o r m  

1.332 0.246 1.086 0.39 0.90 11.40 99.50 F i b e r  

1.346 0.164 1.182 0.39 0.90 11.42 101.20 F i b e r  

1.492 0.857 0.635 0.44 0.90 11.41 101.20 P o w d e r  

1.621 0.622 0.999 0.44 0.90 11.42 100.05 P e l  l e t  

2.324 0.857 1.467 0.44 0.90 11.45 99.51 P e l l e t  

0.697 0.161 0.536 0.19 0.88 12.64 227.13 P e l  l e t  

0.395 0.161 0.232 0.17 0.92 12.71 215.51 P e l  l e t  

Adsorbate 

Water 

Benzene 

r = 2M7 
2.303RTplogp^/p 
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the total surface area, Z, but also the mîcroarea, E . . The pore sizes 
mi c 

of microfissures calculated from equation 53 are found to be 11.40 A° for 

water as adsorbate and 12.65 A° for benzene as adsorbate, respectively; 

the capillary pores are found to be around 100 A° and 220 A° for water 

and benzene as adsorbates, respectively. Micropores so calculated appear 

increasing in size at each subsequent adsorption run. 

The observed breaking strengths of solids are common 1y from ten to 

a thousand times less than the theoretical strengths calculated from heats 

of vaporization, intermolecular forces, etc. The loss of strength of 

fiber in the water vapor environment is well recognized (22). This is 

attributed to the cracks or flaws occurring on the fiber surface which act 

as a stress multiplier. 

Pores can contribute to dislocations by generating stress concen­

trations. Various adsorbed gases might have an effect upon the dis­

locations, especially if some chemisorption or stronger interaction 

should occur at specific sites. 

For materials in the glassy state there is evidence (65) that nor­

mally produced materials do have microcracks or imperfections, which is 

confirmed by comparison with the behavior of specially prepared samples. 

Griffith (51) suggested that all glass specimens are riddled with cracks, 

and that these cracks act as stress multipliers, the stress at the tip 

of the crack being greater than the applied stress by a factor depending 

upon the dimensions and location of the crack. This factor may easily 

reach a value of 100. 

Griffith (52) provided the first plausible theory accounting for the 
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low strength of glass in comparison with the theoretical strength. This 

theory assumes the presence of the flaws of microcracks (here after de­

fined as microfissures) and defines the strength in terms of the depth of 

the crack as well as Young's modulus and surface energy. In the Griffith 

equation: 

= (2YF/%C)1/2 (54) 

where is tensile strength, Y is Young's Modulus, F is surface energy, 

and C is the depth of the crack or flaw. This equation expresses the 

critical condition that an increase in the length of the crack suffi­

ciently decreases the strain energy in the material to provide the surface 

free energy of the newly formed surfaces of the crack. 

As we shall see, it seems probably that every square millimeter of 

a glass surface has many "Griffith" cracks of varying severity. Further, 

it is possible that the existence of each hackle in a rapidly moving 

fracture may indicate a "flaw" in the glass structure (113, p. 82), the 

smallest having radii of only a few mu and the largest of approximately 

5 u. The micropore sizes calculated in this report for Fiberglas-E 

supports the Griffith theory which accounts for the rapid reduction of 

glass fiber tensile strength. 

Griffith (52) also found that the strength of freshly drawn fibers 

falls rapidly with time. The increasing microporous size at subsequent 

runs presented in this report may well account for the loss of strength 

of glass fiber with age. However, further work is clearly desirable on 

the relation between the loss in strength of fibers, their resistance to 

eathering, and surrounding atmospheric conditions. 

I 
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Adhesion 

As discussed earlier, a thermodynamical approach to adhesion is 

possible for the E-g1ass-resin system using water and hydrocarbon ad­

sorptions on E-glass. According to Equation 34 if AF^ and AFj^ are the 

free energies of wetting of the same solid by water and benzene, respec­

tively, the adhesion tension is given by: 

''sw - ''sb = AF, - .  fadh '  

It follows from Equation 55 that the adhesion tension for E-glass is 

2 
^adh ~ -181.33 erg/cm at 20°C. Water-benzene interfacial tension at 

2 
this temperature is 7^^ = 35.0 erg/cm . The free energy of displacement 

-of benzene by Dupre equation is therefore: 

'•sw - ''sb " '"wb = = -'46-33 erg/cm? . 

This implies that an actual contact between E-glass and benzene is un­

attainable in the presence of bulk water. 

Demirel and Enustun (33) investigated the calcite-water and calcite-

2 
benzene systems; they obtained AF^ equal to -ih erg/cm . They concluded 

that the tendency of asphalt on calcite to stripping is much smaller than 

that of quartz based on the comparison of their results with that of Palmer 

and Clark's (96) investigation on vitreous silica-benzene system and of 

Boyd and Livingston's (17) investigation on quartz-water system. In Table 

12 comparison was made on the free energy of displacement for various ma­

terials. As can be seen from the table, hydrocarbon on E-glass is easier 

to be stripped than calcite but harder than quartz or vitreous-silica. 

Seventeen percent CaO may have furnished some stripping resistance to 
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Table 12. Comparison of the free energy of displacement for various materials 

Solid Adsorbate 
1 so-
temp.°C 

2 
erg/inc 

/ 2 
erg/cm 

^adhg 
erg/cm 

AFj 2 
erg/cm Invest igators 

Calclte Water 25 -264 192 Demirel and EnUstUn (33) 

Benzene 25 -155 127 -109 - 74 Demirel and EnlistUn (33) 

Quartz Water 25 -316 244 Boyd and Livingston (17) 

Vit reous-
silica 

Benzene 25 - 81 63 -235 -200 Palmer and Clark (96) 

E-g1ass Water 20 -254 181 Huang et al. (67) 

Benzene 20 - 72 37 -181 -146 Present study 



www.manaraa.com

93 

E-glass which consists mainly of silica. 

Johannson et al. (6S) in their adhesion study on E-glass suggested 

the coupling agent displacement is due to water attack at the glass 

surface. It is a fact that a resin like a polyester will show great 

resistance to moisture absorption when properly bonded to the glass in 

a fabric laminate, but when equally well cured as a casting it will swell 

and rupture. The bond of glass fiber to resins is relatively poor, and 

upon exposure to high atmospheric humidities or actual immersion in water, 

it is rapidly destroyed by penetration of water into the interstices 

adjacent to the hydrophilic glass surface. 

It has been shown by Eakins (37) that proper preparation of a soda-

lime glass fiber surface to remove free alkali increases the resistance to 

hydrolysis of glass-resin bonds in a remarkable manner. 

Heats of Adsorption 

The BET parameter C was used to calculate the average heat of ad­

sorption, less the heat of liquefaction, of the first adsorbed mono-

molecular layer of adsorbate by using Equation 8 which may be expressed 

as: 

E, - E^ = RTlnC . (56) 

The values obtained were corrected according to Clampitt and German (24) 

by using their correction value; 

E, - E^ = RTlnC - (AH^ - E^) . (57) 

The corrected and uncorrected values are listed in Table 13 for water 

vapor-E glass and benzene vapor-E glass systems studied. 
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Table 13. Average heat of adsorption of monomolecular water or benzene 
adsorbed on E-glass 

F  — F  — F ^  
Adsorbate Sample Test I so- C InC 1~ L 1~ L 

form No. temp.°C cal/mole cal/mole 

Water 

Benzene 

Fiber 1  20.05 370 5.91 3441.9 4596.9 

Fiber 2 6.05 370 5.91 3278.1 4433.1 

Powder 3 6.05 133 4.89 2712.3 3867.3 

Pel let 4 10.06 133 4.89 2751.3 3906.3 

Pel let 5 19.99 93 4.53 2638.7 3793.7 

Pel let 6 19.99 106 4.66 2714.4 3869.4 

Pel let 7 19.99 191 4.61 2685.3 3840.3 

Pellet 61 19.86 74 4.30 2498.2 4158.2 

Pellet B2 18.00 89 4.48 2591.3 4251.3 

Pel let B3 18.00 98 4.59 2656.0 4316.0 

^Calculated according to Equation 56. 

^Calculated according to Equation 57. 

Inspection of Table 13 shows that E-glass fibers have higher heats 

of adsorption than the powdered E-glass. The differences range from 564 

cal/mole to 640 cal/mole for water adsorption. Heats of benzene adsorption 

were slightly lower than those of water adsorption. 

As stated earlier, by holding q constant one can make use of the 

CIausius-CIapeyron equation to determine the isoteric heat of adsorption. 

But, as pointed out in the discussion of the potential theory, q can be 

kept constant for a constant potential (e) only when the surface is 
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held constant. When the surface area varies from run to run, or from 

sample to sample, q can no longer be held constant for a constant po­

tential and therefore the e versus cp plot does not produce a character­

istic curve (Figures 31 and 32). As pointed out in the theory, however, 

the € versus thickness, t plot is not sensitive to surface area changes 

and does produce a characteristic curve as can be seen from Figures 33 

and 34 as opposed to Figures 31 and 32, 

Therefore, a new term is introduced to replace q (6?): 

q^ = t'f" (58) 

where t is the thickness of the adsorbed layer: 

* = I ° 

Substituting Equation 59 into Equation 58: 

q^ = I . (60) 

Careful examination reveals that q^ is actually the same as surface ex­

cess r. Hence by solving the Clausius-Clapeyron equation at constant q^ 

the true isosteric heat of adosorption and isosteric entropy of adsorption 

can be obtained. Figures 35 and 36 show q^ as a function of relative 

pressure from which heats of adsorption, AHg and entropies of adsorption, 

AS, were determined as a function of thickness (Figures 37 and 38, and 

Tables 39, 40, 41, 42, 44 and 45 listed in the Appendix.) 

It is seen as a consequence of the heat of adsorption being greater 

than the heat of liquefaction, the enthalpy change for the transfer of 

water or benzene from the vapor to the adsorbed phase is positive. The 

heat of adsorption, however, drops sharply at a film thickness, less than 
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2.7 for water which is about a monolayer thickness. It reaches the 

heat of liquefaction at about 6 A film thickness. Comparing Figures 37 

and 38 with Table 13* the isosteric heat of adsorption so computed by the 

modified equation shows good agreement with that computed from the BET 

parameters for the first layer of adsorbed adsorbate. Again, as dis­

cussed earlier, the untreated, water quenched E-glass fiber has higher 

heats of adsorption than that of powdered or compacted powdered E-glass 

at low surface coverages. The heats of adsorption for benzene vapor ad­

sorbed on E-glass appear to be lower than that of water vapor. This is 

acceptable since E-glass has greater affinity towards water vapor (12, 

73). 

The heat of adsorption of water vapor on E-glass fiber has been re­

ported by Deitz (31). In his investigation, he found that the pristine 

E-glass fiber appears to have a heat of adsorption value lower than the 

heat of vaporization, while the water-washed fiber appears to have an even 

lower value. He explained chat the preliminary data were not equilibrium 

values and the boundary surface of E-glass has great chemical complexity. 

He said: 

"Contact with liquid water definitely removes calcium and sodium ions, 
these having great affinity for water vapor. These changes are signi­
ficant. As a result the above suggested explanation for the differ­
ence between the two fibers may not be valid because a comparison of 
like with like is not being made." 

Therefore, the heat of adsorption data reported by Deitz (31) is uncertain 

because he used the Clausius-Clapeyron equation without specific surface 

variation corrections. 

Water or benzene adsorption on E-glass probably is predominantly a 
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physical adsorption since in neither case the heat of adsorption exceeds 

30 kcal/mole. 

A progressive decrease in the heat of adsorption as the surface 

coverage is increased has been variously ascribed to surface heter­

ogeneity and to interaction between adsorbed molecules (115, 57). If the 

surface is heterogeneous the more active sites will be covered first and 

the initial heat of adsorption will be high. Less active sites will be 

covered later with lower heats of adsorption. An alternative theory 

assumes that the decreasing value of the heat of adsorption arises be­

cause of increasing interaction between adsorbed molecules as the surface 

sites are filled. Surface heterogeneity and adsorbate interaction on E-

glass will be considered later in the discussion of infrared spectroscopy. 

Entropies of Adsorption 

The entropies of adsorption were calculated from Equation 16, and 

are presented in Figures 37 and 38, and the Appendix. In case of water 

adsorption, at the lowest coverage for which a value is available, AS is 

approximately 20 e.u. This in absolute value is about 8 e.u. less than 

the Trouton constant for water (which may be taken as the entropy change 

for the transfer of one mole of water from liquid to vapor). The difference 

of 8 e.u. is equal to that reported by Tompkins (116) for the adsorption of 

water vapor on sodium chloride (8 e.u,), but is lower than the value re­

ported for adsorption of water vapor on silica or ferric oxide (116). 

The adsorption of water vapor on silica or ferric oxide is more ice-

like than liquid. The entropy evidence for E-glass Indicates a freedom 

intermediate between liquid and solid, Kemball's supermobile adsorption 
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(72), where the adsorbed layer behaves as a 'two-dimensional gas' de­

prived of translational movement at right angle to the surface and some 

of the vibrational and rotational movement, would be acceptable to ex­

plain the entropy loss. A model is appropriate in which the first ad­

sorbed layer is a highly extended liquid layer in which vibrational and 

rotational freedoms are much reduced. 

To interpret entropy of adsorption, two models namely, a perfectly 

mobile model and a rigidly localized model will be considered. Because 

of numerous assumptions in both the models, an agreement to perhaps 3-5 

e.u. between theory and experiment will be acceptable. 

In the gas phase at ordinary temperatures the significant contri­

butions to the entropy are the translational and rotational motions. The 

three dimensional translational entropy is given by 

= ggtr = 11,44 log T + 6.33 (61) 

for one mole of ideal water vapor at one atm. The results range from 

34.3 to 34.6 e.u. in the range of temperatures used. The three dimen­

sional rotational entropy has been given by Herzberg (61) as follows: 

= 3/2R + Rln ̂  (KT)^''^ (62a) 
^ oh^ 

where A, B, C are the moments of inertia and G the symmetry number. For 

-40 
a water molecule cr = 2 and A, B, C are 1,024, 1,920 and 2.947 x 10 

2 
gm.cm respectively, which upon substitution give: 

= 6.86 logT - 6,59 . (62b) 

The results range from 10.1 to 10.3 e.u. in the range of temperatures 
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used. 

!f the adsorbed molecules is perfectly mobile its rotational freedom 

remains essentially unrestricted; in place of three dimensional transla­

tion there will be a restricted two-dimensional translation plus a weak 

vibration. Law (78) gives an equation for the two dimensional trans­

lation which is expressed by: 

=  4 . 5 8  [ 1 . 7 3 T +  1 ]  ( 6 3 )  

giving values ranging from 13.8 to 21.2 e. u.. 

For ordinary chemical bonds with vibration frequencies in the in­

frared range, i.e. 1000-5000 cm~^, calculated from Equations 21 and 

22 is negligibly small. Unfortunately, this is not true for the weak 

bond of a mobile film and the entropy can only be estimated roughly. A 

value of 3 e.u. will be assigned to on the basis of the data re­

ported by Kemball (72). 

For a completely localized adsorbate (water on glass) all the entropy 

associated with the three dimensional translation will disappear. Most of 

(~10 e.u.) will also disappear, but there will remain the ro­

tation of the hydrogen atoms around the axis passing through the oxygen 

atom and the center of mass, since the oxygen most likely is bonded to 

the glass surface. The value of 2-3 e.u., depending on temperatures, 

has been assigned to ^5^°^ (101). For localized adsorption can 

be neglected. If the bond is like an OH bond (v ~3475 cm ^), Equation 

21 gives « 0.01 e.u. |f attachment is by a Si-0 bond (v ~1100 

cm '), the associated entropy is 0.2 e.u. 
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Configurâtional entropy which is related to the number of ways in 

which adsorbed molecules may be distributed, should also be taken into 

account in the localized adsorption model. may be readily derived 

statistically by considering a system composed of n molecules and m sites, 

so that n/m = 9. The number of ways in which m sites may be arranged in­

to two groups of n occupied and m-n empty sites is nl/(m-n)inl. Then the 

configurâtional entropy may be given by = kin ml/(m-n)ini. The use 

of the Stirling approximation, followed by differentiation with respect 

to n, leads to; 

= 4.58 log ^ (64) 

which gives values of 8.1 - 1.4 e.u. over the coverage studied. 

Thus for the localized adsorption model, 

s' . ,3"" + ,srot . jrot .  ̂conf (&;) 
Q J I O 

and for mobile adsorption model, 

gS"" = ggtr _ ^gtr _ ^gvib ^ (66) 

For water v^por as adsorbate ' = 34 ~ 42 e.u. and = 9 ~ 18 

e.u. The adsorbed water on E-glass is intermediate in nature between 

the two models. However, there is some indication of greater mobility 

at greater coverage. The formation of a second layer probably takes place 

above gaps in the first layer and in such a way as to make hydrogen bond­

ing likely. This is reflected in the decrease in free energy, enthalpy 

and entropy. A continuation of this process results in the attainment 

of a liquid water structure above two or three layers. 

Law (78) found AH^ = 14 kcal/mole for the first layer of water 



www.manaraa.com

109 

adsorbed on GeOg at 300°K, and from entropy considerations he concluded 

that the adsorption was localized. For the multi-layer region, however, 

with a AHg of 10 kcal/mole the film, became mobilized. 

Kemball (72), studying the adsorption of benzene on mercury, con­

cluded that the benzene molecules lose all rotation except that in the 

plane of the ring and also lose the translational freedom perpendicular 

to the surface. The mechanism of this adsorption, therefore, is that the 

benzene molecules are adsorbed in a flat position on the surface, while 

they move rather freely over the surface, this motion, of course, being 

accompanied by a vibration of high frequency, probably of a frequency of 

13 14 
about 10 to 10 per sec. 

The majority of substances, bound on surfaces by physical adsorption, 

belong to this class, showing restricted translational and rotational 

freedom of movement. In many cases the loss of entropy on adsorption, 

found experimentally, is roughly equal to the entropy change which may 

be expected theoretically, assuming that the translational degree of free­

dom perpendicular to the surface is completely lost. This does not imply 

that no vibration with respect to the surface exists. It only means that 

the strength of the adsorption is so great that practically all molecules 

are compelled to vibrate in the ground level of this vibration. 

Kinetics of Sorption 

The increase in the amount adsorbed with time is shown in Figure 39. 

IR activated sample (see p. 50) shows greater amount of sorption than non 

IR-activated sample at any specific time of adsorption. These experimental 

results on the water vapor E-glass system show that the Bangham equation 
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(Equation 41) fits the adsorption kinetics of the system (see Figure 40). 

According to Bangham and Sever (9), the long continued sorption, as in this 

case, of water vapor by glass is an absorption rather than an adsorption 

process. As will be seen later, the sorption of water and benzene by E-

glass is probably due to a combination of adsorption and absorption. 

The rate of adsorption was determined as a function of time for a 

series of temperatures: 18°, 18.9° and 20°C for saturated water vapor (the 

data are presented in the Appendix), Figure 41 shows a typical example. 

IR activated run again shows a greater rate of adsorption than non IR-

activated run at any period of time. Figure 42 shows the rate of adsorp­

tion as a function of the amount adsorbed, it is found that log (dn/dt) 

changes linearly with the sorbed amount, n, for the IR activated run in the 

region of n = 5 ~ 25 x 10^^ molec./gm. (i.e. dn/dt = 3.5 ~ 1 x 10^^ mole./ 

gm.min.). Non IR-activated run shows rather shorter region of linear 

relationship (n = 3 ~ 11 x 10^^ molec./gm, i.e. dn/dt = 2 ^ 1.6 x lo'^ 

molec./gm.min.) indicating that surface nature differs drastically from 

IR-activated to non IR-activated run. The latter was found covered with 

at least one monolayer of water vapor (called hygroscopic surface layer) 

prior to each experiment. The adsorption process in which this linear re­

lationship holds has been called the "first process" by Tuzi (119) but he 

does not give an explanation of its mechanism. We shall call this process 

"chemisorption process" and attempt to give an explanation. Recent 

studies of the adsorption of water on porous glass by infrared absorption 

(39, 112) have shown that the absorption centers for water molecules are 

Si atoms, 0 atoms and OH groups which appear on the surface. The rate of 
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chemîsorption depends on the rate of collision of molecules on the surface, 

the condensation factor, the activation energy and the probability for a 

molecule to strike an available site (118). The rate of sorption for the 

chemisorption process is given by: 

dn/dt = 2j,SkT— f (n/n^)exp (-E^/RT) (6?) 

where Q is the condensation factor, f(n/n^) is the probability for a mole­

cule to strike an available site where n^ represents the number of available 

sites for chemisorption, and E^ is the activation energy. The sticking 

probability for sorption is given by: 

Sp = af(n/ng)exp(-E^/RT). (68) 

The sticking probability, can be determined from the rate of adsorption 

at a given level of coverage using Equation 67. 

The activation energy of chemisorption may then be calculated from 

Equation 68 for the given amount of sorption. From the slope of the stick­

ing probability versus reciprocal temperature plot (see Figure 43), we ob­

tained E^ = 67.8 and l4l kcal/mole for n = 6 x 10*^ and 12 x 10^^ molec./gm 

respectively, for the IR-activated E-glass specimen. The activation energy 

more than doubled as 6he adsorbed amount increased twice. The high activa­

tion energy of chemisorption is acceptable in view of the nature of 

hydroxy! hydration on glass surface. In case of non IR-activated E-glass 

specimen, no definite straight line portion was observed for sorption rate 

versus amount adsorbed; therefore, no activation energy of chemisorption, 

which might be rather high, was calculated for non IR-activated specimen. 

A close examination reveàled another process in which the rate of 

"1 /2 
sorption was proportional to (time) as shown in Figure 44. This process 
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has been called "diffusion process" (119). The non IR-activated run 

started the diffusion process earlier than the !R-activated run when E-

glass was exposed to water vapor. 

In general, the diffusion of molecules from a gas phase into a semi-

infinite solid trough a boundary at x = 0, obeys Pick's Law:' 

_!£_  ̂ p (69) 
r^t  ÔX 

where c represents the concentration and D the diffusion coefficient 

through the solid. If it is assumed that c = 0 at x > 0 for t = 0 and 

c = Cg at X = 0 for all^t, the rate of sorption and the amount of sorption 

can be derived from Equation 69 as (119): 

dn/dt = c^ \/D/jtt , and (70) 

n = 2c VD t / j i  •  (71 ) 
o 

if there is no adsorption in the gas-solid boundary, c^ means the gas 

phase concentration. However, in the diffusion process, the water dif­

fuses into glass from the adsorbed phase. For this case c can be 

estimated from adsorption data. The activation energy of diffusion, can 

be calculated according to Arrhenius equation (50, p. 1, 64, p. 205): 

D = A|jexp(-Ejj/RT) (72) 

where is a constant and is the activation energy. 

As discussed earlier, we could consider capillary condensation as a 

diffusion process. The rate of capillary condensation was investigated 

by Washburn (121). For a porous body which behaves like an assemblage 

of very small cylindrical capillaries he derived the equation; 
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V = k(7t/n)i/2 (73) 

where V is the volume of liquid penetrating the capillaries in time t, 

k is the rate constant, 7 is the surface tension and Tj is the viscosity 

of the liquid. Since 7 and T] can be considered as constants at a con­

stant temperature. Equation 73 can be simplified to 

n = m^t^/^, (74) 

since n = 2c^ «/otTït, we then get 

= 2c V Dt/ji . (75) 
D o 

Therefore, 

ny = 1.13 cgd^/z (76) 

where is a function of temperature and is related to the rate con­

stant. Equation Ih was obeyed in the water-E glass systems for IR-

activated and non iR-activated runs as was seen in Figure 45 and 46. 

We may find the activation energy of adsorption of E^ from the relation: 

= m^exp(-E^/RT) . (77) 

Equation 77 can further be modified in relation to activation energy 

of diffusion as follows as given by Johnson Todd (70) 

m- = 1.13c Dy^exp(-E./2RT) (78) 

where E_ = 2 E , and 1.13 C D ~ "^o. 
u a 00 

Equation 77 can be written in the form 

logm^ = -B/T + C (79) 

where B = E /2.303R and C is a constant. Figure 47 shows m^ as a function 
a U 

of temperature with and without IR-activated runs respectively. Values 



www.manaraa.com

120 

40 

O AT 20.0"C 

• AT 18.9 C 
/O 

_ A AT 18.0"c 

S 
bo 

O o 
o 
s 

1-4 
o 
X /A 

fi 

14 16 10 12 8 6 4 2 0 

+1/2 , . 
t , /mm 

Figure 4$. Amount of water sorbed on E-glass versus t 
at a series of temperatures (1R-activated) 



www.manaraa.com

121 

O 
o 
S 

AI 
o 
rH 
X 

40 

O AT 20.0°C 
35 

" • AT 18.9°C 

30 _ A AT 18.0°C 

O 
O 

25 

20 

/ 
0 

15 

\
 \
 \
 

•
 • D • 

10 -

A A A 

5 

1 

1 1 1 1 1 1 
0 2 • 8 10 12 14 16 

yr, /min 

1/2 
Figure 46. Amount of water sorbed on E-glass versus t 

at a series of temperatures (non 1R-activated) 



www.manaraa.com

IR-ACTIVAT ED 

NON IR-ACTIVATED 

Figure 4?. mn versus reciprocal of temperature for water vapor 
adsorbed onto E-glass 



www.manaraa.com

123 

of nip, B, C, and for E-glass calculated from Figure 4? are pre­

sented in Table 14. The activation energy of adsorption for IR-acti-

vated specimen is 2.6 kcal/mole higher than the activation energy of 

non îR-activated specimens. The energy of activation necessary for the 

removal of the physically sorbed water is 6.6 ~ 8.2 kcal/mole (76). 

The high activation energy of diffusion in E-glass implied that evacua­

tion by pumping is insufficient for removing chemisorbed water from E-

glass surface. Table 15 gives a comparison of a activation energies of 

diffusion for various glass water systems. The activation energies of 

Table 14. Determination of activation energy of diffusion of water 
vapor into E-glass 

T reatment Temp.°C B,°K C 
E: 

Kcal/mole Kcal/mole 

IR-activated 20.0 

18.9 

4.85 

3.49 

18.0 2.58 8570 43.88 39 .1 78.2 

Non 1r-
act i vated 

20.0 

18.9 

3.63 

2.69 

18.0 2.05 7960 41.69 36.5 73.0 

^Eg = 2.303RB 

diffusion of water into E-glass was found considerably higher than 

activation energies of diffusion of water into other glasses (119, 70) 

except aluminosci1icate. Fifteen per cent of alumina in E-glass must 
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Table I5. Comparison of activation energy of diffusion of water vapor 
for various glass 

Glass type Ep,kcal/mole Reference 

Pyrex 41 Johnson Todd (70) 

Nonex 38 Tuzi (119) 

Te rex 57.4 Tuzi (119) 

Lime-aluminum 64 Johnson Todd (70) 

Vycor 75 Johnson Todd (70) 

Aluminosi1icate 98 Garbe and Christians 
(49) 

Borosi1icate 11 Johnson Todd (70) 

Soda-Iime-siIica 58 Johnson Todd (70) 

E-glass 78 Present result 

have contributed a great deal of diffusion resistance to E-glass as it 

is the case with aluminosi1icate. 

The diffusion coefficient may be calculated from the intercept (n^) 

1 /2 
of the n vs. t plot. The values of diffusion coefficient so obtained 

are presented in Table 16. The results of diffusion coefficient of 

water into E-glass so obtained agrees well with the extrapolated values 

from the literature (92). The data from the literature and the results 

of the present study are plotted in Figure 48. 

It is thus shown that we can determine the diffusion coefficients 

from the adsorption rate data as well as from the usual permeability 

experiments. The diffusion model proposed thus explains the mechanism 

of adsorption. 
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Table 16. Calculation of diffusion coefficient of water vapor into 
E-glass 

Treatment Temp.,°C 36 mln. 
19 

molec./gnixl 0 
2 — 17 

cm /sec.xlO 

IR-activated 20.0 16.8 8.1 

18.9 13.1 4.7 

18.0 9.8 2.8 

Non 1R-
act ivated 

20.0 14.9 6.4 

18.9 11.9 4.1 

18.0 7.6 1.7 

= (dn/dt)^îtt/n^, where n^ = 22.8 x 10^^ molec./gm. 

The nature of the mechanism by which the water vapor diffuses into 

E-glass surface is hypothesized. When the water vapor is adsorbed on 

the glass surface, the force of attraction is so great that it forms 

hydroxyl groups with the surface active sites, i.e.. Si, 0 or Ca. The 

hydroxy! groups could move by jumping from one modifier cation to the 

next if there was sufficient volume to accommodate them, or they could 

simply move interstitially. 

In the absence of any direct evidence, no other mechanism such as 

the one offered by Steacie (114) will be considered. An experimental 

work on the relative movements of hydrogen and oxygen of water and on 

the possible movement of water in an electrical field is obviously de­

sirable. 
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Infrared Absorption 

The main purpose of this phase of the study was to identify the 

species adsorbed on the surface and to determine the fractional surface 

coverage by these species. An E-glass spectrum in the infrared region 

(5000-650 cm ^) was produced using the vacuum frustrated internal re­

flectance technique described earlier (see Figure 49). All the band 

frequencies were identified as summarized in Table 17. The frequency of 

the band at 3750 cm ' is typical of free vibrating OH groups, and its 

symmetrical appearance indicates that there is no interaction between it 

and other molecules or surface groups. The presence of hydroxyl groups 

Table 17. Infrared spectra of E-glass using the facuum frustrated 
internal reflectance technique with Beckman IR 4 spectro­
photometer 

Group Wave Number, cm ' Assignment 

AÎ OH 3800-3700 Free OH stretching 

Si OH 3750 Free OH stretching 

Mg(0H)2 3700-3650 Free OH stretching 

Ca(0H)2 3635 Free OH stretching 

OH 2800 Hydrogen bonded 
stretching 

HCOg 2375 Stretchi ng 

HOH 1750-1650 Crystallized water 
symmetric bending 

co; 1413 Synsnetric stretching 

BO- 1410-1340 Stretching vibration 

SÎ0' 1320-770 Stretching vibration 



www.manaraa.com

1000 :')000 
100 .. .1. . . .1 

Wave number, cm 

JOOO 1500 1000 900 

Wavelength, micron 

Figure 49. Internal reflection spectrum of Fiberg)as-E taken with KRS-5 
plate, 0 = 45° 



www.manaraa.com

129 

at the region of 3800-3700 cm' can be explained on the basis of a com­

puter model of the alumina surface postulated by Peri (97). He pre­

dicted, according to his computer model, a surface containing five dif­

ferent types of hydroxyl groups. These groups are variously referred 

to as 'free hydroxyl groups' or 'isolated silanol-aluminol groups' (86). 

The assigned vibrational frequencies are shown in Table 18. It was 

found that the OH bonds (including hydroxyls associated with magnesium 

and calcium ions) existed on the surface in all cases as the E-glass was 

evacuated and heated to a moderate temperature of 85*C by an infrated 

lamp. These hydroxyls existing on alumino-si1icate glass were also 

found unevacuable by many investigators (1, 2). Some fringes around 

I75O-I65O cm ^ which were identified as rotational frequencies of crys­

talline water showed a rather interesting behavior. It indicated, from 

Table 18. Hydroxyl groups associated with alumina^ 

Band 
-1 

Wave Number, cm No. of Nearest 
Oxide Neighbors 

A 3800 il 

B 3780 3 

C 3744 2 

D 3733 1 

E 3700 0 

^Assignment of frequencies based on Peri's data (97). 

the band shape, restricted rotation as well as defect (as a result of 
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flaws) on the E-glass surface which had been treated with deionized water 

when manufactured. There is one very sharp and intense band appearing 

at 2375 ctn"^. It was identified as HCO~ stretching frequency. Also the 

absorption at 1413 cm ^ was credited to CO^ vibrations due to the pres­

ence of COg in the glasses. It was surprising to find CO2 existing in 

E-glass. And yet, many investigators (100, 82) have found the CO2 ab­

sorption in sodium silicate glasses. However, the band appearing at 

2375 cm ^ could be a BOH stretching vibration band. The large valley 

from 1320 to 770 cm~^ is characteristic of silicate glasses and is due 

to the Si02 network. The magnesium hydroxide exhibited a broad absorpt­

ion band between 3700 and 365O cm ^ that is due to the antisymmetrical 

OH stretching vibration of the lattice hydroxide and a small band at 

3770 cm ^ that is a combination band also characteristic of the bulk 

material. 

As discussed earlier, the spectral shifts of hydroxy! stretching 

frequency to lower wave numbers is evidence of interaction with the ad­

sorbed gas molecules. The strong, broad absorption band that appeared 

at about 3500 cm~^ was attributed to molecular water that is physically 

adsorbed upon the surface. Confirmatory evidence is provided by a study 

of the spectrum of adsorbed water in the bending region of the spectrum 

(14). Addition of water vapor to dehydrated E-glass caused the appear­

ance of bands at 3400 and 1635 cm ^. Both bands increase concomitantly 

in intensity with the addition of water (see Figure 50). 

The spectrum of the adsorbed benzene was little different from that 

of the liquid, the band frequency deviations being less than 10 cm ' 
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indicating physically adsorbed species. A very clearly sharp band 

appeared at 673 cm '. This is 2 cm greater than that of benzene vapor 

but 2 cm ^ lower than that of liquid benzene. Thus, it appeared that 

the adsorbed state was somewhat in between a gas and a liquid as dis-

cussed earlier. This probably being a specific interaction occurred be-

ween a surface hydroxy! group and the %-electron system of an aromatic 

molecule which led to changes in the infrared spectrum of the adsorbed 

molecule. A second point of interest was that the intensity of this 

band was linearly related to the amount of benzene present on the sur­

face. Figure 51 presented a plot of relative changes in the intensity 

of the bands at 673 cm ^ as a function of benzene vapor pressure. In 

view of the figure, the greatest perturbations were observed at low 

coverage. This also can be seen from Figure 52, where band shift is 

plotted against relative pressure. The intensity ratios initially were 

about twice those observed for liquid benzene and indicated major changes 

in the electron distribution in the neighborhood of the atoms giving rise 

to these vibrations. Similar perturbations have been noted for benzene 

adsorbed on molecular sieves and alkali halides (1). 

It has been observed that the infrared absorption band due to the 

stretching vibration of surface hydroxyl groups at 3750 cm ^ shifts to a 

lower frequency when gas molecules are adsorbed on the surface. The 

magnitude of this shift, is considered to be a measure of the 
OH 

strength of the interaction between hydroxyl groups and adsorbed 

molecules. Gal.kin et al. (48) pointed out that a difference, be­

tween the heat of adsorption of a gas on a silica surface covered with 
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hydroxy! groups and the heat of adsorption of the same gas on a de-

hydroxy!ated surface, should also be a measure of the strength of the 

interaction between surface hydroxyl groups and adsorbed molecules. The 

relation between AQ, and Av has been proved to be roughly linear (5, 
a Un 

54, p. 96). 

Table 19 shows the calculated values of the surface hydroxyl groups 

perturbations and AQ^'s due to adsorption of water vapor and benzene. 

Overlapping of the fundamental OH-stretching bands of water molecules 

and hydroxyl groups makes it impossible to measure Av^^ directly. How­

ever, AVmu can be obtained from the difference between the frequency 
uH 

shifts of the OH-stretching plus OH-bending combination band and the 

Table 19. Values of AVq^ and AQ^ for adsorbed water and adsorbed 
benzene on E-glass 

Adsorbate 
cm cm 

none 3690^ 6o 

water 3400 350 2.7 

Benzene 3645 105 1.8 

^v.. = 3750 cm ^ for IR activated and evacuated E-glass surface. 
—Un 

' 'Evacuated E-glass surface. 

OH-bending fundamental band as suggested by Anderson (5). The Aso 

calculated for water is about 200 cm"^. A^L^, for benzene is !05 cm ^ 
On 
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about half of that of water. Figure 53 shows the dependence of the 

value ÙSJ on the heat of adsorption for a surface coverage of 0.5 con­

structed using the data reported in the literature. We believed that 

this study should yield important information on the nature and energy 

of short-range molecular interaction upon adsorption. 

The heat of adsorption of water and benzene vapors on E-glass de­

creased with surface coverage. The heat of specific adsorption of 

benzene on the surface hydroxyly groups is higher than the heat of non­

specific adsorption; as the coverage is increased, nonspecific adsorption 

will start to take place, and the heat of adsorption in the later stages 

of the process will approach that of the saturated molecule. From the 

analysis of the entropy of adsorption, it indicated, as discussed earlier, 

that the adsorbed benzene undergoes either two-dimensional translation 

and rotation in the plane of the ring or a motion In which it can also 

rotate around one of the axes lying in the plane of the ring. The shift 

of the band due to surface hydroxy! groups from 3750 cm ^ to values re­

ported in Table 19 on the one hand and higher intensities (Figure 50) 

of shifted band on the others indicate that water adsorption occured on 

OH cites. Recently, Baslla (13) in the investigation of the interaction 

of water with the surface of highly dehydrated silica-alumina glass 

pointed out that the adsorbed water Is fixed and Is held on acidic sites 

far removed from surface hydroxy1 groups that hydrogen-bonding to these 

groups does not occur. 

Roev et al. (107), on the basis of infrared studies, concluded that 

the the silica-alumina surface contained only one type of hydroxy1 group. 
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The corresponding band, which is observed at 37^5 cm ^, is easily 

deuterated and shifted to 2762 cm Although it is possible that acci­

dental degeneracy could give rise to a single hydroxyl stretching fre­

quency in place of the three vibrations observed on alumina, the close 

similarity in both frequency and band half-widths for the OH group on 

silica-alumina (12 cm~^) and silica (10 cm~^) favors the assumption that 

the hydroxyl groups are attached to silicon atoms in the surface rather 

than aluminum atoms (54, p. 171). Sewell and Morgan (111) in their 

study of methanol vapor adsorption on soda-lime-silica glass stated that 

the surfaces of the glasses were hydroxylated in the cleavage process as 

indicated below; 

cleavage in 
=Si-0-Si= humid atmosphere ^ =Si-0-H. 

The slow and irreversible adsorption observed in this investigation 

suggests that these surface hydroxyl groups may diffuse into the glass 

supporting the assumption of diffusion process for solubility of gases 

in solids (114). The fundamental characteristic of the usual adsorption 

isotherm is the large amount of gas which is taken up at low pressures. 

A small amount of solubility, where Henry's law usually holds, will exert 

little influence on the total sorption at low pressures, but will have a 

larger effect at high pressures. Since the low pressure range of the 

isotherm is the essential part for computations disolved adsorbate does 

not influence the results of single experiments appreciably. Subsequent 

experiments, however, as found out in this study will show appreciable 

differences especially if the sample is not activated by IR irradiation 

and evacuation. 
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CONCLUSIONS 

The following conclusions have been reached on the basis of the 

results obtained. 

1. Permanent hysteresis was observed in each sorption experiment 

with the E-glass-water system. The first layer of adsorbed water could 

not be degassed by pumping. To close the hysteresis loop it was 

necessary to heat the sample with an infrared lamp. The permanent 

hysteresis is believed to be caused by diffused hydroxyls on the surface. 

Heating by infrared radiation, reverses the hydrolysis possibly causing a 

change of the surface structure. This change results in a variation of 

the specific surfaces. 

2. The adsorption isotherms obtained were of Brunauer type IV 

adsorption isotherms, indicating capillary condensation dominated 

the adsorption process at high relative pressures. 

3. Specific surface was determined by three independent methods, 

namely, light microscopy, BET, and Fu and Bartell (FB) methods. Very 

good agreements were found between the results. The BET specific sur-

face (1.2-1.9 m~/gm) agreed very closely with the FB total specific sur-

2 2 
face (1.3-2.3 m /gm). On the other hand the FB external (0,16-0.85 m /gm) 

surface area agreed very closely with geometric areas calculated from 

2 
light microscope observation (0,16 m /gm). 

4. Good correlations were obtained between the mean pore diameter 

calculated from the specific surface and the mean pore diameter calcu­

lated according to capillary condensation theory (110 - 220 %). 
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5. The existence of micropores constituting 85% of the total sur­

face was hypothesized to be responsible for a ten-fold difference between 

the surface area determined by BET method and light microscopy. 

6. The specific surface of E-glass determined by the BET method 

2 
using water vapor ranged from 1.2 m /gm for the E-glass fiber to 1.9 

2 
m /gm for the E-glass pellet. The specific surface of the E-glass pellet 

2 
determined by the BET method using benzene ranged from 0.84 m /gm to 

0.52 m^/gm. If the molecular area is assumed to be 32.2 8^. If 42 

is used for the molecular area (9I) specific surfaces are found ranging 

2 2 
from 0.68 m /gm to 1.10 m /gm. The molecular area of benzene in micro­

pores may be larger than either area assumed (91); if this is the case 

BET areas obtained from benzene adsorption are not too far from those 

obtained from water adsorption. 

7. The well-known loss of strength of fiber in the water vapor 

environment was hypothesized to be due to the cracks or flaws occurring 

due to water adsorption on the fiber surface. These cracks act as stress 

multipliers. The micropore sizes calculated in this report for Fiberglas-

E supports the Griffith rupture theory which accounts for the rapid re­

duction of glass fiber tensile strength. 

8. The increasing microspore size as well as increasing surface 

area with subsequent runs presented in this report may account for the 

loss of strength of glass fiber with age. 

9. A € versus t plot is proposed to replace the usual £ versus cp 

plot of the potential theory. Where e surface potential, t thickness of 

the adsorbate on the surface and cp is the volume of the adsorbate on the 
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surface. The proposed plot was found to be independent of the specific 

surface whereas the usual plot was found to depend on the specific 

surface. This supports the accuracy of the surface area determinations. 

10. The free energy of wetting for the water-E-glass system at 

20"C was -253.691 erg/cm ; the free energy of wetting for the benzene-E-

o 2 
glass system at 20°C was -72.36 erg/cm . 

11. The free energy of displacement of benzene by water was 

2 
-146.33 erg/cm . This implies that an actual contact between E-glass 

and benzene is unattainable in the presence of bulk water. Therefore 

benzene has less affinity for an E-g1ass surface than water has. 

12. A modified Clausius-Clapeyron equation, 1n(p^/p2)q^ = 

Hg/R(1/T2 - l/T^j where q^ = tf 5^ is proposed to compute the 

isosteric heat of adsorption (q^ is in a sense equal to T the surface 

excess, f is a correction factor and 6^ is the density of the 

adsorbate). 

13. The isosteric heat of adsorption computed by the modified 

equation gave good agreement with that computed from the BET parameters 

for the first layer of adsorbate. See Table 13. The average value is 

about 3Kca1/mole. 

14. The heat of adsorption reaches the heat of liquefaction be­

yond two to three layers of adsorbate on E-g1ass. 

15. Water-treated E-g1ass fiber has a higher heat of adsorption 

than that of powdered E-glass or compacted E-g1ass. The differences 

range from 564 cal/mole to 640 cal/mole. 
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16. The isosteric heat of adsorption for benzene vapor is lower 

than that for water vapor at same coverage (see Figures 37 and 38).  

17. The computed isosteric entropies of adsorption indicate that 

the state of adsorbed phase is between the solid and the liquid state at 

low coverage. The liquid state is reached at high coverage. 

18. The fact that the entropy in the adsorbed state is lower than 

in a liquid state indicates that the adsorbed molecules have a lower de­

gree of freedom than the molecules in the liquid. 

19. Adsorption of water or benzene by E-glass is a spontaneous 

process because of decreasing free energy or increasing entropy. 

20. The diffusion coefficient can be calculated from the ad­

sorption rate data. 

21. Adsorption rate studies indicated that water vapor diffuses 

"17 2 
into E-glass at a rate of 10 cm /sec at ordinary temperature. 

22. The experimental adsorption rate results on the water-E-

glass system fits the Bangham equation indicating the adsorption pro­

cess is a combination of adsorption and absorption. 

23. Slow and irreversible effects due to high activation energy 

of adsorption in the water-E-glass system may be explained on the basis 

of a combination of adsorption and diffusion. This also explains the 

solubility of gases in E-glass. 

24. A mechanism by which the water vapor diffuses into E-glass is 

hypothesized. When the water vapor is adsorbed on the glass surface, 

the force of attraction is so great that it forms hydroxyl groups with 
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the surface active sites. The hydroxy! groups could move by jumping 

from one modifier cation to the next if there was sufficient volume 

to accommodate them, or they could simply move interstitially. 

25. From the heat of adsorption decrease and infrared band fre­

quencies and intensities variations with adsorption, it was concluded 

that both water and benzene were adsorbed on hydroxyl groups at low 

coverage. After the saturation of hydroxyl sites, however, they 

were adsorbed on remaining sites of the heterogeneous surface. 

26. The infrared band due to the stretching vibration of surface 

hydroxyl groups at 3750 cm ^ shifts to a lower frequency when gas 

molecules are adsorbed on the glass surface. The magnitude of this 

shift is a measure of the strength of the interaction between hydroxyl 

groups and adsorbing molecules. It was found that this shift is 

roughly linearly related to the difference between the heat of adsorp­

tion of a gas on a surface, i.e., silica, covered with hydroxyl groups 

and the heat of adsorption of the same gas on a dehydroxylated sur­

face. 
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A P P E N D I X  

M a t h e m a t i c a l  F o r m u l a t i o n  o f  M u l t i m o l e c u l a r  A d s o r p t i o n  I s o t h e r m  

T h e  f o l l o w i n g  i s  a n  i n d e p e n d e n t  d e r i v a t i o n  o f  B r u n a u e r ,  E m m e t t  a n d  

T e l l e r ' s  ( 2 1 )  m u l  t i m o l e c u l  a r  a d s o r p t i o n  i s o t h e r m  e q u a t i o n .  T h e  a p p r o a c h  

f o l l o w e d  i n  t h e  d e r i v a t i o n  i s  t h a t  f o r m u l a t e d  b y  d e  B o e r  a n d  h i s  c o ­

w o r k e r s  ( 2 9 ,  2 0 ) .  

T o  s t a r t ,  l e t  u s  a s s u m e  t h a t  t h e  t o t a l  n u m b e r  o f  m o l e c u l e s  w h i c h  i s  

2 
a d s o r b e d  p e r  c m  i s  t h e  s u m  o f  m o l e c u l e s  c o v e r i n g  a  f r a c t i o n  o f  e a c h  

l a y e r ,  i o e . ,  

J=.co 

C  =  G o  * 1  +  ^^0^2 +  ° ° °  =  < ^ 0  '  ® i  )  

w h e r e  < 7 ^  i s  t h e  n u m b e r  o f  m o l e c u l e s  w h i c h  w o u l d  f o r m  o n e  c o m p l e t e  m o n o -

2 
l a y e r  o n  o n e  c m  s u r f a c e ,  a n d  € .  i s  t h e  f r a c t i o n  o f  t h e  s u r f a c e  a c t u a l l y  

c o v e r e d  b y  t h e  i  t h  1 a y e r »  

T h e  n u m b e r  o f  m o l e c u l e s  s t r i k i n g  a n d  s t i c k i n g  t o  t h e  b a r e  s u r f a c e  

m u s t ,  a t  e q u i l i b r i u m ,  b e  e q u a l  t o  t h e  n u m b e r  o f  m o l e c u l e s  e v a p o r a t i n g  

f r o m  t h e  s u r f a c e ,  h e n c e  f o r  t h e  f i r s t  l a y e r :  

= VgOoG, (A2) 

2 
w h e r e  n  i s  t h e  n u m b e r  o f  m o l e c u l e s  s t r i k i n g  o n e  c m  o f  t h e  s u r f a c e  p e r  

s e c o n d ,  t h e  f r a c t i o n  o f  t h e  t o t a l  s u r f a c e  r e m a i n i n g  b a r e  a n d  i s  t h e  

f r a c t i o n  o f  t h e  a d s o r b e d  m o l e c u l e s  o f  t h e  f i r s t  l a y e r  e v a p o r a t i n g  p e r  

s e c o n d e  

F o r  d y n a m i c  e q u i l i b r i u m :  
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n ^ o  -  n e ^  +  v , a Q « 2  "  °  ^  

t h e  f i r s t  t e r m  n @ ^  c o r r e s p o n d s  t o  a n  i n c r e a s e  i n  t h e  f i r s t  l a y e r  

c a p a c i t y  d u e  t o  a d s o r p t i o n  o n  b a r e  s u r f a c e ,  t h e  s e c o n d  t e r m  c o r r e s p o n d s  

t o  a  d e c r e a s e  i n  t h e  f i r s t  l a y e r  c a p a c i t y  d u e  t o  a d s o r p t i o n  o n  t h e  f i r s t  

l a y e r ,  t h e  t h i r d  t e r m  c o r r e s p o n d s  t o  a n  i n c r e a s e  i n  t h e  f i r s t  l a y e r  

c a p a c i t y  d u e  t o  e v a p o r a t i o n  f r o m  t h e  s e c o n d  l a y e r ,  a n d  t h e  f o u r t h  t e r m  

c o r r e s p o n d s  t o  a  d e c r e a s e  i n  t h e  f i r s t  l a y e r  c a p a c i t y  d u e  t o  e v a p o r a t i o n  

f r o m  t h e  f i r s t  l a y e r *  F o r  e q u i l i b r i u m  t h e  n e t  r e s u l t  s h o u l d  b e  z e r o  

l e a d i n g  t o  E q u a t i o n  A 3 ®  S u b s t i t u t i n g  E q u a t i o n  A 2  i n t o  E q u a t i o n  A 3 ,  w e  

o b t a i  n  

C o n t i n u i n g  t h e  s a m e  a r g u m e n t ,  w e  g e t  f o r  t h e  i t h  l a y e r :  

n 9 ; _ 1  =  O  ( A 4 )  

I f  w e  r e p l a c e  v j  =  1 / t j ,  w h e r e  t .  i s  t i m e  o f  a d s o r p t i o n ,  t h e  t i m e  d u r i n g  

w h i c h  a  m o l e c u l e  r e m a i n s  a d s o r b e d ,  w e  o b t a i n  t h e  f o l l o w i n g  e x p r e s s i o n s :  

C T  6 ,  =  n  t  
o  1  

O o * 2  =  "  ® l ' |  

t .  
I • 

( A 5 )  

F u r t h e r m o r e ,  w e  w i l l  a s s u m e  t h a t  t h e  t i m e  o f  a d s o r p t i o n  f o r  a  m o l e c u l e  

b o u n d  o n  t o p  o f  a n o t h e r  a d s o r b e d  m o l e c u l e  o f  i t s  o w n  k i n d  w i l l  b e  t h e  
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s a m e ,  i . e . ,  

t  ̂ ~  o o o o o  =  t -  1  "  ( r \ 6  J  

T h e r e f o r e ,  E q u a t i o n  A 5  c a n  b e  s i m p l i f i e d  t o  

0 2  =  X  e ,  

@ 2  =  X  @ 2  =  X ^ G ^  

8 ;  =  x ' " '  e ,  ( A 7 )  

w h e r e  X  =  •  ( A 8 )  

S i n c e  6 ^  =  n t  b y  s u b s t i t u t i n g  t h i s  i n t o  E q u a t i o n  A 7  w e  g e t ;  

4 .  =  x ' t  e ^ / t ,  ( A 9 )  

T h e  t o t a l  n u m b e r  o f  m o l e c u l e s  w h i c h  a r e  a d s o r b e d  i s  o b t a i n e d  b y  s u b s t i ­

t u t i n g  t h e  a b o v e  e x p r e s s i o n  i n t o  E q u a t i o n  A l :  

i = ^  

O "  =  a _  T ,  i @ .  =  a  ~ —  @  Z  i  X *  ( A l  0 )  
°  i = l  '  o  o  

w h e r e  9  = 1 - 6 ,  - 6 _ . o o - 6 .  
o  I  /  I  

=  I  -  S  e .  

i = i  '  

= Ï - e i: x' .  ( A l l )  
^ 1  °  i = i  
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R e a r r a n g i  n g ;  

1 + 7  2  x '  
^ 1  1 = 1  

S u b s t i t u t i n g  E q u a t i o n  A 1 2  i n t o  E q u a t i o n  A l  0  a n d  p u t t i n g  t / t ^  =  C j  w e  

o b t a i n  

C T ^ C  S  i  X  
°  i = l  

^ ~ !=» . 

1 + c s x' 
i = l  

( A 1 3 )  

U s i n g  t h e  f o l l o w i n g  m a t h e m a t i c a l  e x p r e s s i o n s ;  

' = = '  Î  X  

S  i  X '  =  o  ,  a n d  

i = l  ( 1 - X )  

i  X  
S  X  =  - T - r  J  w e  g e t  

i  =  l  '  ^  

C (T X 
o "  =  .  ( A ' 4 )  

( 1  -X) ( 1 - X  +  cx) 

S u b s t i t u t i n g  t h e  e x p r e s s i o n  X  =  n t ^ / c r ^  i n t o  t h e  f o l l o w i n g  w e l l - k n o w n  

r e l a t i o n s h i p  
N P  

n  =  

v T  2 j t M R T  

=  p P  ( A 1 5 )  

w h e r e  N  i s  A v o g a d r o ' s  c o n s t a n t ,  M  i s  m o l e c u l a r  w e i g h t  o f  t h e  a d s o r b a t e ,  

w e  o b t a i n  ^  

X  =  .  ( A 1 6 )  
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S u b s t i t u t i n g  =  q ^ / g t ^  i n t o  E q u a t i o n  A l 6 ,  

X  =  P / P  .  
o  

I n s e r t i n g  t h i s  i n t o  E q u a t i o n  A l 4 ,  w e  g e t  

C P a  
a  =  2  .  ( A 1 7 )  

( P  - P ) [ l  +  ( C - 1  )  P / P  ]  

2 
C o n v e r t i n g  n u m b e r  o f  m o l e c u l e s  o f  t h e  a d s o r b a t e  c y  p e r  c m  t o  v o l u m e  o f  

a d s o r b a t e  V  p e r  g m  o f  a d s o r b e n t  u s i n g  t h e  f o l l o w i n g  r e l a t i o n s h i p s :  

V P N  V  P N  
m  

c y  =  a n d  C T  =  ( A l 8 )  

M S  M  Z  

w h e r e  P  i s  t h e  d e n s i t y ,  a n d  i s  t h e  v o l u m e  o f  t h e  a d s o r b e d  g a s  w h e n  t h e  

e n t i r e  s u r f a c e  i s  c o v e r e d  w i t h  a  c o m p l e t e  u n i m o l e c u l a r  l a y e r ,  w e  g e t :  

C P  
V  =  ,  o r  ( A Î 5 )  

( P  - P ) [ l  +  ( C - 1  )  P / P  ]  

+  — — —  .  ( A 2 0 )  

V ( P  - P )  V  C  V  C  P  
o  m  m  o  

T h i s  i s  t h e  e q u a t i o n  f o r  t h e  a d s o r p t i o n  i s o t h e r m  w i t h  t h r e e  c o n s t a n t ,  

e . g . ,  C ,  P  a n d  V  «  I f  t h e s e  t h r e e  c o n s t a n t s  a r e  e v a l u a t e d  f r o m  e x -
'  o  m  

p e r i  m e n t a l  d a t a ,  t h e  v a l u e  f o r  V  g i v e s  a  d i r e c t  m e a s u r e  o f  t h e  s u r f a c e  
m  

a r e a  S  o f  t h e  a d s o r b e n t ,  a n d  t h e  v a l u e  C  g i v e s  t h e  h e a t  o f  a d s o r p t i o n ,  i  =  e  
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e  ( E  - E , ) / R T  

C = t / t ,  =  TTRT—  =  ®  ( A 2 1 )  

t o , e  

Since  =  t^ , .  

D e f i n i t i o n  o f  A d s o r p t i v e  E n t h a l p y  

I n  F i g u r e  5 4 ,  t h e  a d s o r p t i o n  o f  a  g a s  a t  p r e s s u r e  p  o n t o  a  s o l i d  

s u r f a c e  S  c o n s i s t s  o f  a  n o n s p o n t a n e o u s  l i q u e f a c t i o n  p r o c e s s  w i t h  a  f r e e  

e n e r g y  c h a n g e  o f  d n A G ^  a n d  a  c o r r e s p o n d i n g  e n t h a l p y  c h a n g e  o f  d n A H ^ ,  a n d  

a  s p o n t a n e o u s  a d s o r p t i o n a l  s p r e a d i n g  p r o c e s s  w i t h  a n  a d s o r p t i v e  f r e e  

e n e r g y  c h a n g e  o f  d n A G  a n d  a  c o r r e s p o n d i n g  a d s o r p t i v e  e n t h a l p y  c h a n g e  o f  

d n A H .  A t  e q u i l i b r i u m  t h e  f r e e  e n e r g y  c h a n g e  o f  t h e  w h o l e  p r o c e s s  i s  z e r o ,  

I • 6 « ^ 

d n & G g  =  d n A G ^  +  d n A G  =  0 .  ( A 2 2 )  

o r  A G  =  -  A G |  (A23) 

S i n c e  AG^ = RT I n  P^/P (A24) 

A G  =  —  A G j  =  — R T  I n  p ^ / p ,  ( A 2 5 )  

H o w e v e r  t h e  e n t h a l p y  c h a n g e ,  f o r  t h e  w h o l e  p r o c e s s  i s  n o t  z e r o :  

d n A H g  =  d n A H ^  +  d n A H  ( A 2 6 )  

o r  a d s o r p t i v e  e n t h a l p y ,  =  A H ^  -  A H ^  ( A 2 7 )  

c o r r e s p o n d i n g  t o  t h e  f r e e  e n e r g y  c h a n g e  ^ G .  

F r e e  e n e r g y  a n d  e n t h a l p y  c h a n g e s  c o n s i d e r e d  h e r e  a r e  a c t u a l l y  

p a r t i a l  m o l a r  q u a n t i t i e s  n a m e l y  c h e m i c a l  p o t e n t i a l  a n d  p a r t i a l  m o l a r  

e n t h a l p y .  
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T h e  s a m e  r e l a t i o n s  m a y  b e  r e p r e s e n t e d  b y  t h e  f o l l o w i n g  s t e p s :  

A ( g )  - »  A ( l ) ;  A H ^  

+ )  A ( l )  - »  A ( a )  ;  A G ,  A H  

A ( g )  ^  A ( a ) ;  A G ^ ,  A H ^  «  
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A d s o r p t i o n  I s o t h e r m  D a t a  

E - q ] a s s - w a t e r  v a p o r  s y s t e m  

T a b l e  2 0 .  A d s o r p t i o n  i s o t h e r m  d a t a  f o r  w a t e r  o n  E - g l a s s  f i b e r ,  

f i r s t  r u r P  

P j  m m H g  P / P ^ , x 1 0 " ^  q , x i o  3 P / P  0 P / P  0 q 

q q (I- P / P ^ )  p / p  
0 

0 . 1 4 5  0.827 0.300 27.553 27.782 0.0363 

0 . 4 4 3  2 . 4 6 8  0.329 75.033 7 6 . 9 3 1  0.0133 

3 . 1 8 9  18.181 0 . 3 8 6  471.01 5 7 5 . 6 8  0 . 0 0 2 1 4  

5.882 3 3 . 5 3 5  0 . 4 5 7  7 3 3 . 8 0  1 1 0 4 . 0 4  0.00136 

80605 4 9 . 0 5 9  0.600 817 .65 1605 . 1 0  0.00122 

11.091 6 3 . 2 3 3  0.701 902.03 2 4 5 3 . 3 8  0 . 0 0 1 1 1  

1 2 . 9 3 6  7 3 . 7 5 1  0 . 8 0 1  9 2 0 . 7 4  3 5 0 7 . 7 2  0 . 0 0 1 0 9  

1 4 . 0 3 8  8 0 . 0 3 4  0.872 917.82 4 5 9 6 . 9 3  0.00109 

15.035 85.718 0.952 900.21 6303.13 0 .  0 0 1 1 1  

15.651 89.2 3 0  1 .000 892.30 8 2 8 5 . 0 8  0 . 0 0 1 1 2  

16.192 9 2 . 3 1 5  1.072 8 6 0 . 5 5  1 ) 1 9 7 . 2 7  0 . 0 0 1 1 6  

1 6 . 5 5 8  9 4 . 4 0 1  1.258 7 5 0 . 4 1  1 3 4 0 2 . 5 0  0 . 0 0 1 3 3  

1 7 . 0 6 2  9 7 . 2 7 5  1.544 630.02 23077.50 0. 00159 

1 7 . 3 9 3  9 9 . Î  6 2  3 . 2 8 8  301.58 3 0 4 1 2 . 0 0  0. 00332 

^  N o t e  :  =  1 7 * 5 4 0  m m K g  a t  2 0 .  0 5 ° C  
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T a b l e  2 1 .  D e s o r p t i o n  i s o t h e r m  d a t a  f o r  w a t e r  v a p o r  o n  E - g l a s s  f i b e r ,  

a  
f i r s t  r u n  

P, mmHg p/p^, xlO ^ P/Po 0
 

Q
. 

q 

q q(:-p/po) P/Po 

17.113 97.61 3.774 258.64 10821.67 0.00387 

14.927 85.14 1.314 647.94 4360,33 0. 00154 

13.523 77.13 1.230 627.09 2742.37 0.00159 

11.474 65.44 1.178 555.57 1607.83 0.00180 

9.671 55.16 1.000 551.62 123 0.25 0.00181 

7.527 42.936 0.856 501.59 878.99 0.00199 

6.209 35.420 0.914 387.53 600.07 0.00258 

2.942 16.780 0.714 235.01 282.40 0.00425 

0.945 5.389 0.744 72.43 76.56 0.01380 

0.736 4.200 0.772 54.40 56.79 0.01840 

0.561 3.200 0.744 43.01 44.43 0.02325 

^ N o t e :  p ^  =  1 7 »  5 4  m m H g  a t  2 0 .  0 5 ° C  
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T a b l e  2 2 .  A d s o r p t i o n  i s o t h e r m  d a t a  f o r  w a t e r  v a p o r  o n  E - g l a s s  f i b e r ,  

s e c o n d  r u n ^  

P , m m H g  P / P g j X l  O " ^  q ,  x1 0 " ^  P / P ^  P / P o  q 

q q ( 1 - P / P ^ )  p / p  
0  

0.301 4 . 2 9 4  0 . 3 5 7  120.28 1 2 5 . 6 8  0.00831 

1 . 5 1 4  2 1 . 5 9  0 . 4 1 5  5 2 0 . 2 4  6 6 3 . 4 9  0.00192 

2 . 4 5 4  35.00 0 . 4 8 6  7 2 0 . 1 6  1 1 0 7 . 9 4  0.00139 

3.682 5 2 . 5 0  0 . 5 2 9  9 9 2 . 4 4  2 0 8 9 . 3 4  0.00101 

5 . 3 3 4  7 6 . 0 6  0 . 7 1 5  1 0 6 3 . 7 7  4 4 4 3 . 5 1  0.00094 

6 . 0 8 5  8 6 . 7 7  0 . 8 1 5  1 0 6 4 . 6 6  8 0 4 7 . 3 4  0.00094 

6.522 9 3 . 0 0  1.030 902.9 1  12898.7 5  0.0011 1  

6 . 8 2 5  9 7 . 3 2  1 . 4 0 0  6 9 5 . 1 4  2 5 9 3 8 . 1 7  0.00144 

a  
N o t e  :  P Q =  7 . 9 1 3  m m H g  a t  6. 00° c 
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T a b l e  23. D e s o r p t i o n  i s o t h e r m  d a t a  f o r  w a t e r  v a p o r  o n  E - g l a s s  f i b e r ,  

s e c o n d  r u n ^  

P ,  m m H g  P / P ^ , x l 0 " ^  q , x l 0 " 3  
P/Po 0

 
Q. "k q 

q q(i-p/Po) P/Po 

7.2349 99.88 2.76 361.88 30157.00 0. 00276 

3.138 43.33 0.944 459.00 809.96 0. 00217 

m
 

0
 14.90 0.572 260.49 3 06.09 0.00384 

0.553 7.63 0.486 157.09 170.00 0.00636 

0.261 3.60 0.543 66.32 68. 79 0.01508 

0 0 0.186 

^  N o t e  :  p ^  =  7.2435 m m H g  a t  6.435°C 
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T a b l e  2 4 .  A d s o r p t i o n  

a  
f i r s t  r u n  

i s o t h e r m  d a t a  f o r  w a t e r  v a p o r  o n  E - g l a s s  p o w d e r .  

p ,  m m H g  P/P^xio ^ qjxicT^ P/Po 0
 

D
. 

q 

q q (1-p/p^) P/Po 

0 . 0 3 9  0.566 0.129 43.87 4 4 . 1 2  0 . 0 2 2 8  

0 . 1 3 0  1 . 8 5  0.272 68.07 6 9 . 3 5  0 . 0 1 4 7  

0 . 6 4 7  9 . 1 9  0 . 3 7 2  2 4 6 . 8 6  2 7 1 . 8 4  0 . 0 0 4 0 5  

1 . 6 0 6  2 2 . 8 2  0 . 3 8 7  5 8 9 . 7 1  7 6 4 . 0 8  0 . 0 0 1 6 9  

3 . 1 5 1  4 4 .  78 0 . 4 8 7  9 1 9 . 5 7  1 6 6 5 . 2 8  0.00109 

3 . 7 9 0  5 3 . 8 7  0 . 5 4 4  330.20 2 1 4 6 . 5 5  0 .  0 0 1 0 1  

4 . 4 6 0  63.38 0.630 1 006.03 2 7 4 7 . 2 2  0.00099 

5 . 4 0 9  76.87 0 . 8 0 2  958.17 4 1 0 2 . 5 4  0 .  0 0 1  0 4  

5 . 7 9 6  8 2 . 3 7  0 . 9 4 5  871.21 4941.63 0 00115 

5 . 8 6 4  8 3 . 3 4  1 . 2 7 1  655.7 0  3 9 3 5 . 8 0  0.0 0 1 52 

6.172 87.73 1.576 556.66 4 5 3 3 . 0 8  0 . 0 0 1 79 

6.429 9 1 . 3 8  1 . 8 2 7  5 0 0 . 1 6  5801.69 0 . 0 0 2 0 0  

6.452 9 1 . 7 1  2.203 4 1 6 . 2 9  5018.69 0 .  0 0 2 4 0  

6.655 9 4 . 5 9  3 . 0 8 0  307.11 5677.7 6  0 . 0 0 3 2 5  

60622 9 4 . 1 1  3 . 4 0 2  276.63 4 6 9 6 . 6 2  0 . 0 0 3 6 1  

6 . 7 4 1  9 5 . 8 1  4 . 2 4 4  225.7 5  5385.35 0 . 0 0 4 4 3  

6 . 8 4 1  9 7 . 2 2  5 . 1 7 5  1 8 7 . 8 6  6765.02 0 . 0 0 5 3 2  

6 .910 98.21 6.035 1 6 2 . 7 3  9 1 1 1 . 6 5  0 . 0 0 6 1 4  

N o t e :  =  7 . 0 3 6  m m H g  a t  6 . 0 5 ° C  
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Table 25. Desorption isotherm data for water vapor on E-glass powder, 

a 
r i r s t  r u n  

p, mmHg P / P g j x i o  ^  q,xl 0 - 3  P/Po p/Po q 

q q (I-P/Pq) P/PQ 

6 . 7 7 7  96.318 4 . 2 1 2  228.67 0.0 0 4 7 3  

6.218 88.379 1.862 4 7 4 . 6 4 5  4084.38 0 . 0 0 2 1 0  

5.606 7 9 . 6 7 7  1 . 3 7 5  5 7 9 . 4 6 9  2851.29 0.00172 

5 . 1 9 0  7 3 . 7 6 3  1.261 5 8 4 . 5 9 5  2229.51 0 .  0 0 1  7 1  

4 . 6 3 5  6 5 . 8 8 1  1 . 1 7 5  560.689 1 6 4 3 . 3 3  0.001 78 

3 .662 5 2 . 0 4  1.037 501.832 1 0 4 6 . 3 5  0 . 0 0 1 9 9  

2.312 32.85 0.960 3 4 2 . 1 8 7  509.58 0,00292 

1 . 2 8 5  1 8 . 2 6 7  0 . 9 4 5  1 9 3 . 1 9 9  236.38 0 . 0 0 5 1 7  

0.399 5.68 0 . 8 4 5  67.219 7 1 . 2 7  0 . 0 1 4 8 8  

0.252 3 . 5 0  0.845 4 2 ,367 4 3 . 9 4  0.0236 

N o t e :  p ^  =  7 » 0 3 6  m m H g  a t  6 . 0 5 ° C  
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T a b l e  2 6 .  A d s o r p t i o n  

f i r s t  r u n * ^  

i s o t h e r m  d a t a  f o r  w a t e r  v a p o r  o n  E - g l a s s  p e l  l e t .  

p ,  m m H g  p / p ^ , x l 0  
• 2  - 3  

q,xl0 j  p/p^ P/Po q 

q qO-p/p^) p/p^ 

0 .  0 0 2  0 . 0 2  0 . 2 4 2  0 . 8 3  0 . 8 3  1.21 

0 .  0 9 2  0 . 9 9  0 . 2 0 4  4 8 . 5 3  4 9 . 0 1  0.206 

0 . 2 4 6  2 . 6 6  0 . 3 3 2  80.12 8 2 . 3 1  0 . 0 1 2 4 8  

0 . 2 8 5  3 . 0 8  0 . 3 1 9  9 6 . 5 5  99.62 0 . 0 1 0 3 5  

0 . 5 6 5  6.12 0 . 3 3 2  1 8 4 . 3 4  1 9 6 . 3 5  0.00542 

0 . 7 8 3  8.47 0 . 4 0 8  2 0 7 . 5 9  226.81 0 . 0 0 4 8 1  

1. 0 6 1  1 1 . 4 8  0 . 4 2 1  272.68 308.05 0.00367 

1.633 17. 6 6  0 . 4 5 9  3 8 4 . 7 5  4 6 7 . 2 7  0.00259 

2 . 4 1 3  26.10 0 . 5 7 4  4 5 4 . 70 615.29 0 . 0 0 2 1 9  

2.979 32.22 0.638 505.01 7 4 5 . 0 8  0.00198 

4 * 4 3 4  4 7 . 9 6  0 #  727 6 5 9 . 6 9  1267.67 0 . 00151 

6 . 1 7 3  6 6 . 7 7  0 . 8 1 6  8 1 8 . 2 6  2 4 6 2 . 4 1  0 .  0 0 1 2 2  

7 . 7 7 6  8 4 . 1 2  1 . 1 7 4  7 1 6 . 4 8  4 5 1 0 . 4 3  0 . 0 0 1 3 9  

7 . 9 4 4  8 5 . 9 2  1.569 5 4 7 . 6 3  3890.5 6  0 . 0 0 1 8 2  

8.095 87.5 6  1 . 5 8 2  5 5 3 . 4 7  4 4 4 9 . 1 7  0 . 0 0 1 8 0  

8.556 9 2 . 5 5  1.913 4 8 3 . 7 8  6 4 9 1 . 07 0 . 0 0 2 0 6  

8 . 5 7 3  9 2 . 7 3  2.015 4 6 0 . 2 0  6 3 3  0 . 1 0  0 . 0 0 2 1 7  

8 . 8 4 4  95.66 2 . 1 8 1  4 3 8 .61 10106.13 0.00227 

8 . 8 2 0  9 5 . 4 0  2 . 4 6 2  3 8 7 . 4 9  8 4 2 3 . 6 9  0.00258 

^  N o t e  :  =  9 * 2 4 5  m m H g  a t  1 0 . 0 6 ° C  
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T a b l e  2 7 .  D e s o r p t i o n  i s o t h e r m  d a t a  f o r  w a t e r  v a p o r  o n  E - g l a s s  p e l l e t ,  

f i r s t  r u n ^  

P, mmHg p/p^,xl O"^ q,xlO"^ P / P o  P / P Q  q 

q qO-p/p^) P / P q  

7 . 9 9 7  8 6 . 5 1  1 . 7 8  4 8 5 . 9 8 8  3 6 0 1 . 5 2  0 . 0 0 2 0 6  

6 . 9 8 7  7 5 . 5 7  1 . 4 4  5 2 4 . 8 3  2 1 4 8 . 8 4  0.00190 

6 . 0 7 4  6 5 . 7 0  1 . 3 4  4 9 0 . 3 0  1 4 2 9 . 5 0  0 . 0 0 2 0 4  

5 . 3 0 8  5 7 . 4 2  1 . 3 1  4 3 8 . 3 1  1029.36 0 . 0 0 2 2 8  

4 . 4 3 7  4 7 . 9 9  1 . 2 2  3 9 3 . 4 2  7 5 6 . 5 3  0.00254 

3 . 3 2 6  3 5 . 9 8  1 . 1 7  3 0 7 . 5 1  4 8 0 . 3 3  0 . 0 0 3 2 5  

1 . 9 4 5  2 1 . 0 4  1 . 0 7  1 9 6 . 6 5  2 4 9 . 0 6  0.00508. 

1 . 5 2 7  1 6 . 5 2  1 . 0 5  1 5 7 . 3 2  1 8 8 . 4 5  0.00636 

1 . 1 3 3  1 2 . 2 5  1 . 0 7  1 1 4 . 5 3  1 3 0 . 5 3  0.00873 

0 . 3 4 4  3.72 0.98 3 8 . 0 2  3 9 . 4 9  0 . 0 2 6 3 0  

0  0  0 . 4 1  mm 

^  N o t e  :  p ^  =  S m l k S  m m H g  a t  1 0 .  0 6 ° C  
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l e  2  

i m H g  

0986 

0 9 2 6  

2 7 6  

4 3 5  

065 

704 

514 

3 7 1  

319 

7 2 7  

853 

. 9 3 5  

,144 

,125 

.413 

.184 

.533 

.043 

.918 

.836 
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A d s o r p t i o n  i s o t h e r m  d a t a  f o r  w a t e r  v a p o r  o n  E - g l a s s  p e l l e t ,  

s e c o n d  r u n ^  

P / PqjX I O " ^  q , x l O " ^  p / p ^  p / p ^  

q f l - p / P g )  P / P Q 

0.56 0.089 63.14 63.50 0.0158 

0.528 0.191 27.64 27.79 0.0362 

1.57 0.229 68.73 69.83 0.0145 

2.48 0.318 78.02 80.00 0.0128 

6.075 0.446 136.21 145.02 0.00734 

9.72 0.523 185.85 205.86 0.00538 

20.04 0.663 302.34 378.13 0.00331 

24.93 0.688 362.41 482.792 0.00276 

30.34 0.727 417.36 599.15 0.00239 

38.37 0.778 493.24 800.37 0.00203 

44.79 0.654 524.55 950.23 0.00191 

50.97 0.944 539.93 1101.24 0.00185 

57.87 1.020 567.31 1346.45 0.00176 

63.463 1.-70 593.11 1623.32 0.00169 

70.810 1.173 603.66 2068.06 0.00165 

75.21 1.301 578.08 2379.71 0.00173 

82.90 1.441 575.31 3365.01 0.00174 

85.81 1.735 494.60 3486.29 0. 00202 

90.80 2.360 384.76 4184.02 0. 00260 

90.34 2.309 391.23 4048.37 0.00256 
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T a b l e  2 8 .  ( C o n t i n u e d )  

P ,  m m H g  P/Pq^XIO ^ q , x i o " 3  P / P q  P/Po q 

q q( i -p/Po) P / P o  

1 6 . 7 1 7  9 5 . 3 6 2  3 . 5 3 3  269.92 5 8 1 9 . 7 1  0. 003 70 

16.808 95.88 3 . 9 4 2  234.23 5 9 0 5 . 06 0 .  0 0 4 1 1  

1 6 . 8 2 2  9 5 . 9 6  3 . 8 4 0  249.90 6 1 8 7 . 1 4  0 .  0 0 4 0 0  

1 7 . 0 1 5  9 7 . 06 5 . 3 9 6  179.87 6122.45 0.00556 

1 7 . 0 9 7  9 7 . 5 3 0  5 . 2 6 8  1 8 5 . 1 3  7 4 9 5 . 4 1  0.00540 

1 7 . 1 5 1  9 7 . 8 3 8  6 . 5 4 4  1 4 9 . 5 1  6 9 1 5 . 2 6  0.00669 

1 7 . 1 6 9  9 7 . 9 4  6 . 6 4 6  1 4 7 . 3 7  7 1 5 7 . 2 8  0.00678 

1 7 .262 98.47 7 . 2 3 3  1 3 6 . 1 4  8 9 0 3 . 9 4  0. 00734 

1 7 . 4 9 1  9 9 . 7 8  9 . 0 8 3  109.85 49260.21 0. 00910  

^ N o t e  :  P ^  =  1 7 . 5 3  m m H g  a t  1 9 .  99°C 
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Table 2S. Desorptîon isotherm data for water vapor on E-glass pellet, 

second run^ 

p, mmHg p/p^,xlO ^ q,xlO •3 0
 

CL 

p/p„ q 

q q f i -p/pg) p/Po 

15.05 85.88 2.26 380.00 2691.22 0.00263 

14.02 79.96 1.72 464.884 2319.78 0.00215 

13.70 78.18 1.57 497.962 2282.13 0.00201 

12,67 72.28 1.45 498.496 1798.46 0.00200 

11.78 67.24 1.31 511.712 1561.95 0.00195 

11.17 63.72 1.29 494.713 1363.56 0.00202 

10.25 58.46 1.22 477.655 1150.00 0.00209 

9. 1 1  51.98 1.15 452.779 942.87 0.00221 

8.51 48.53 1.02 475.823 924.54 0.00210 

7.32 41.78 1.06 394.896 678.28 0.00253 

6.36 36.27 1.03 351.103 550.91 0.00285 

5.43 31.01 0.38 351.784 457.72 0.00316 

4.35 24.83 Oc 98 252.810 336.30 0.00395 

3.72 21.20 0.99 213.105 270,45 0.00469 

2.88 16.41 0.90 181.348 216.95 0.00551 

2.36 13.50 0.81 165.404 191.21 0. 00604 

0.81 4.60 0.79 58.266 61.07 0.01716 

0.40 2.29 0.76 29.987 30.69 0.03335 

^Note: P^ = 17.53 mmHg at 19. 99°C 
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Table 30, Adsorption 

third run^ 

isotherm data for water vapor on E-glass pellet. 

p_, mmHg p/p^,xlO ^ q,xl0 ^ P/Po P/Po q 

q q(i -p/Po) p/Po 

0.054 0.3 07 0. 06 51.17 51.32 0.0195 

0.065 0.375 0. 089 42.13 42.29 0.023 7 

0. 097 0.556 0.153 36.34 36.54 0.0275 

0.136 0.778 0.204 38.14 38.43 0.0262 

0.248 1.414 0.318 44.46 45.10 0.0225 

0.352 2.01 0.344 58.43 59.63 0.0171 

0.621 3.544 0.408 86.86 90.05 0.0115 

1.007 5.747 0.433 132.72 140.82 0.0075 

1.368 7.80 0.459 169.93 184.31 0.0059 

1.796 10.245 0.484 211.67 235.83 0.0047 

2-385 13.607 0.535 254.33 294.39 0.0039 

3.215 18.338 0.561 326.88 400.28 0.0030 

3.931 22.427 0.586 382.71 493.34 0.0026 

4.574 26.09 0.637 409.57 554.15 0.0024 

5.555 31.69 0.689 459.94 673.31 0.0021 

^Note: = 17*53 tnmHg at 19» 99°C 
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Table 31. Adsorption isotherm data for water vapor on E-glass pellet, 

a 
fourth run 

p,mmHg p/p^jxlO"^ q,xlO"^ P/Po 0
 

a
.
 a

. 

q 

q q(i-p/Po) 0
 

Q. C
L
 

0.063 0.357 0.200 17.85 17.91 0.0560 

0.153 0.875 0.269 32.53 32.81 0.0307 

0.355 2.028 0.399 50.83 51.88 0.0196 

1.342 7.656 0.503 152.21 164.83 0.00657 

2.498 14.249 0.568 250.86 292.55 0.00398 

3.398 19.383 0.594 326.31 404.77 0.00247 

5.175 29.521 0.672 439.30 623.31 0.00160 

^Note: = 17.53 mmHg at 19.99°C 

E-qlass-benzene vapor system 

Table 32. Adsorption isotherm data for benzene vapor on E-glass pellet, 

first run^ 

-2 -3 
P,mmHg P/P^^IO q,xlO p/p^ p/p^ q 

q qfi-p/pq) P/Pg 

1.430 1.98 0.236 80.51 87.07 0.01242 

2.983 3.99 0.275 145.09 151.12 0.00689 

4.929 6.59 0.335 196.71 210.59 O.OO508 

6.558 8.77 0.361 242.93 266.29 0.00412 

8.207 10.97 0.375 292.53 328.58 0.00342 
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Table 32. (Continued) 

p,mmHg p/p ,10 ^ 
0 

q,xl0 3 P/Po P/Po q 

q q(i-p/Po) P/Pq 

10.261 13.72 0.393 349.11 404.62 0.00286 

11.954 15.98 0.393 406.61 483.95 0.00246 

13.480 18.02 0.393 458.52 559.31 0.00218 

15.254 20.39 0.393 518.83 651.71 0.00193 

16.798 22.46 0.406 553.20 713.44 0.00181 

18.565 24.82 0.406 611.33 813.15 0.00163 

20.039 26.79 0.419 639.38 873.35 0.00156 

21.644 28.93 0.419 690 .45 971.65 0.00145 

23.340 31.20 0.419 744.63 1082.31 0.00134 

27.578 36.87 0.419 879.95 1393.87 0.00113 

32.307 43.19 0.419 1030.78 1814.76 0.00097 

36.376 48.63 0.419 1160.62 2259.33 0.00086 

37.743 50.46 0.419 1204.29 2430.95 0.00083 

38.954 52.07 0.419 1242.72 2592.78 0.00080 

40.420 54.04 0.419 1289.74 2806.21 0.000.75 

41.789 55.87 0.419 1333.41 3021.55 0.00075 

43.140 57.67 0.419 1376.37 3251.53 0.00073 

44.574 59.59 0.419 1422.19 3519.41 0.00070 

45.907 61.37 0.419 1464.68 3791.55 0.00068 

50.670 67.74 0.419 1616.71 5011.49 0.00062 

50.966 68 .13 0.419 1626.01 5102.02 0.00061 
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Table 32. (Continued) 

p,mmHg P/PQJO'^ q,xl0 3 p/Po P/Pg q 

q qCi-p/p^) P/Po 

52.046 69.58 0.433 1606.93 5282.47 0.00062 

53.442 71.44 0.433 1649.88 5776.90 0.00061 

54.774 73.22 0.433 1690.99 6314.39 0.00059 

56.123 75.03 0.433 1732.79 6939.50 0.00058 

57.127 76.37 0.446 1712.33 7246.43 0.00060 

58.255 77.88 0.459 1696.73 7670,58 0.00059 

57.954 77.47 0.472 1641.31 7285.01 0.00061 

59.604 79.68 0.485 1642.88 8085.07 0.00061 

60.202 80.48 0 .498 1616.06 8279.02 0.00062 

62.741 83.88 0.511 1641.48 10182.9 0.00061 

63.530 84.93 0.524 1620.80 10755.1 0.00062 

63.941 85.48 0.537 1591.80 10970.4 0.00063 

66.686 89.15 0.616 1447.24 13338.6 0.00069 

67 .664 90.44 0.603 1499.83 15688.6 0.00068 

69.623 93.07 0.655 1420.91 20503.8 0.00070 

69.957 93.52 0.708 1320.90 20415.8 0.00076 

70.492 94.24 0.760 1240.00 21527.8 0.00081 

74.568 99.68 4.170 239.04 74700.2 0.00418 

^Note: = 74.803 mmHg at 19.866°C 
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Table 33* Adsorption isotherm data for benzene vapor on E-glass 

pellet, second run® 

p, mmHg p/p^,x10"^ q, xl 0 3 P/PQ P/Po q 

q qCi-p/p^) P/Po 

0.202 0.297 0.262 11.336 11.369 0.088215 

0.639 0.940 0.171 54.971 55.492 0.018191 

2.015 2.963 0.210 141.095 145.403 0.007087 

3.640 5.353 0.262 204,313 215.868 0.004894 

5.252 7.725 0.262 294.847 319.531 0.003391 

6.918 10.175 0.262 388.358 432.350 0.002574 

8.945 13.156 0.262 502.137 578.206 0.001991 

11.413 16.787 0.262 640.725 769.982 0.001560 

13.512 19.873 0.262 758.511 946.636 0.001318 

14.991 22.049 0.262 841.565 1079.607 0.001188 

17.403 25.596 0.262 976.946 1313.029 0.OUI 023 

23.471 34.522 0.262 1317.633 2012.330 Go 000759 

^Note; p^ = 67.99 mmHg at 18.00°C 
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Table 34. Adsorption isotherm data for benzene vapor on E-glass pellet, 

. a 
tnira run 

p, mmHg P/Pq^X IO ^ q,xio 3 
P/Po 0

 
CL q 

q qC'-p/p^) P/Pq 

1.832 2.694 0.171 157.54 161.899 0. 006347 

4.424 6.506 0.210 309.81 331.347 0.003227 

6.203 9.122 0.223 409.06 450.108 0.002444 

8.033 11.813 0.234 506.02 574.401 0.001980 

10.3 00 15.147 0.223 679.237 800.421 0.001472 

11.952 17.579 0.234 751.239 911.477 0.001331 

14.364 21.126 0.223 947.354 1201.007 0.001055 

16.488 24.250 0.223 1087.444 1435.549 0.000919 

18.537 27.264 0.231 1180.259 1622.573 0.000847 

20.574 30.260 0.223 1356.950 1945.728 0.000736 

22.802 33.538 0.223 1503 .946 2262.934 0.000664 

26.972 39.670 0.223 1778.923 2948.655 0.000562 

31.034 45.645 0.210 2173.571 3998.475 0.000460 

34.829 51.226 0.210 2439.333 5000.683 0. 000409 

39.101 57.510 0.210 2738.571 6445.214 0.000365 

43.294 63.677 0.210 3032.238 8348.673 0.000329 

47.687 70.138 0.210 3339.904 11185.213 0.000299 

50.296 73.975 0.223 3317.264 12748.903 0.0003 01 

53.069 78.054 0.223 3500.179 15946.147 0. 000285 
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Table 34. (Continued) 

p,mmHg p/PQSxl0"^ q, xl 0"^ P/Po p/Po q 

q qCi-p/p^) P/Po 

54.599 80.304 0.23Î 3476.363 17646.515 0.000287 

58.038 85.362 0.289 2953.70 20175.563 0.000338 

61.667 90. 700 0.342 2652.04 28516.632 0.000367 

62.661 92.162 0.460 2003.52 25555.124 0.000499 

63.900 93.984 0.552 1702.61 28282.53 0.000587 

64.662 95.105 0.605 1571.98 32081.29 0.000636 

65.543 96.401 0.750 1285.34 35704.07 0.000778 

67.476 99.244 3.330 298.03 39214.47 0.003355 

67.990 100 3.883 257.53 

^ Note : = 67.99 mmHg at 17» 998°C 

Geometric Surface Area Calculations for Fiberglas-E 

Radi us measurement from mi croscope photo 

Instrument: Ultraphot II 

Magnify power: 20 x 40 

Flux: 8.6 

Exposure time : 7 min. (auto) 

Diameter: 8 mm/800 = 0.01 mm * 10 u 
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Surface area cal culation 

2 
A = 2n%r + 2n#rl. 

2 3 
V = nitr 1. - 0.1076 cm 

-k 
where 1. = 1. 5  cm, r = 5Ai= 5 x l O  cm. So, number of fibers 

n = 0.1076/«xl.5x (5x10"^)^ = 9.16x10^ 

then, surface area 

A = 2x9.16x10^3.1^15x5x10"^ (5x10"^ +1.5) 

= 431.8 cm^ 

since weight of the sample = 0.27976 gram the specific surface of E-glass 

fiber : 

2 
2 = 1550 cm /gm 

2 
= 0.155 m /gm . 

Adsorption Energy Change Data 

E-qlass-water vapor system 

The values of adsorption energy change, -2 A F, were obtained using 

Equation 48. The results presented here were derived from the adsorption 

isotherm data. 
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Table 35» Adsorption energy change of E-g1ass due to adsorption of 

water vapor 

Adsorption energy change ( -SAF), erg/gmxlO 

p/p 
Sample form Fiber Fiber Powder Pellet Pellet 

ISO-temp. °C 20.05 6.05 6.05 10.06 19.99 

0. 025 0.86 0.81 0.88 0.74 1.14 

0. 050 1.07 0.99 1.07 1.01 1.48 

0.100 1.30 1.24 1.30 1.32 1.91 

0.200 1.64 1.56 1.63 1.71 2.47 

0.300 1.86 1.77 1.84 1.99 2.85 

0.400 2.03 1.93 2.04 2.22 3.15 

0.500 2.19 2.09 2.14 2.42 3.40 

0.600 2.34 2.23 2.27 2.60 3.64 

0. 700 2.49 2.37 2.39 2.76 3.86 

0. Boo 2.62 2.50 2.53 2.93 4.08 

0.900 2.77 2.64 2.72 3.14 4.38 

1.000 2.98 2.84 3.26 3.48 4.94 
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E-qlass-benzene vapor system 

Adsorption energy changes for the benzene adsorption on E-glass 

pellet were obtained at two temperatures. 

Table 36. Adsorption energy changes of E-glass pellet due to adsorption 

of benzene vapor 

P/P 

Adsorption energy change ( -T^F), erg/gmxlO^ 

° I so-temp. °C 19*86 18.00 

0.025 1.58 1.07 

0. 050 2.15 1.46 

0.100 2.88 1.90 

0.200 3.64 2.36 

0.300 4.22 2.63 

0.400 4.59 2.81 

0.500 4.88 2.95 

0.600 5.11 3.06 

0.700 5.31 3.16 

0.800 5.49 3.27 

0.900 5.69 3.38 

1.000 6.10 3.72 
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Heats of Adsorption and Entropies of Adsorption Data 

E-qlass-water vapor system 

Table 37. Calculated film thickness of water vapor adsorbed on E-glass 

f i ber 

>
 
0
 

p/p_ 
0 

6.05 20.05 

P, mmHg 

6.05 20.05 

f 

6.05 . 20.05. 

q 

6.05. 

-a-
f 

20. 05 

2.00 0. 004 0.005 0.029 0.093 1.1207 1.1148 2.148 2.137 

2.25 0.008 0.011 0.060 0.184 1.1238 1.1177 2.423 2.410 

2.50 0. 051 0.058 0.308 1.017 1.1307 1.1251 2.709 2.696 

2.75 0.125 1.140 0.879 2.455 1.1353 1.1289 2.992 2.975 

3.00 0.195 0.210 1.372 3.682 1.1373 1.1307 3.270 3.251 

3.25 0.280 0.300 1.970 5.261 1.1388 1.1322 3.547 3.526 

3.50 0.335 0.350 2.357 6.137 1.1397 1.1330 3.823 3.800 

3.75 0.465 0.483 3.272 8.470 1.1411 1.1343 4.101 4.076 

4.00 0.486 0.503 3.419 8.821 1.1413 1.1346 4.375 4.349 

4.25 O.508 0.525 3.574 9.206 1.1415 1.1348 4.649 4.622 

4,50 0.551 0.568 3.877 9.960 1.1419 1.1350 4.925 4.895 

4.75 0.609 0.624 4.285 10.942 1.1423 1.1353 5.200 5.168 

5.00 0.655 0.665 4.608 31.661 1.1426 1.1357 5.475 5.442 

5.50 0.720 0.730 5.066 12.801 1.1430 1.1361 6.025 5.988 

6.00 0.805 0.814 5.664 14.274 1.1435 1.1366 6.575 6.536 

6.50 0.835 0.842 5.875 14.765 1.1437 1.1368 7.124 7.082 

7.00 0.850 0.857 5.981 15.028 1.1438 1.1369 7.673 7.627 

8.00 0.898 0.902 6.318 15.817 1.1440 1.1370 8.771 8.717 

9.00 0.905 0.910 6.367 15.958 1.1440 1.1371 9.867 9.808 

10. 00 0.909 0.913 6.396 16.010 1.1440 1.1371 10.96 10.90 

16.50 0.913 0.918 6.427 16.098 1.1441 1.1371 18.09 17.98 

20.00 0.956 0.958 6.726 16.799 1.1442 1.1372 21.93 21.80 

a 
Note; = t • f • fig 
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Table 38. Calculated film thickness of water vapor adsorbed on E-glass 

powdered pellet 
>

 0
 

P/Po 
10.06 19.99 

P, 
10.06 

mmHg 
19.99 10 

f 
. 06 19.99 

Af 
10.06 

a 

19.99 

0.75 0.004 0. 005 0.037 0. 084 1. 1198 1.1143 0.805 0.801 

1.00 0.006 0.008 0.059 0.133 1. 1218 1 .1163 1.075 1.070 

1.25 0.009 0.011 0.083 0.184 1. 1252 1.1177 1.348 1.339 

1.50 0. 015 0.017 0.143 0.307 1. 1256 1.1199 1.618 1.610 

1.75 0.018 0.021 0.171 0.368 1. 1264 1.1207 1.889 1.879 

2.00 0.026 0. 029 0.240 0.517 1. 1279 1.1222 2.162 2.151 

2.25 0.058 0. 064 0.536 1.122 1. 1313 1.1255 2.439 2.427 

2.50 0.090 0.097 0.832 1.700 1. 1332 1.1273 2.715 2.701 

2.75 0.170 0.178 1.572 3.120 1. 1361 1.1300 2.994 2.978 

3.00 0.221 0.232 2.043 4.076 1. 1371 1.1311 3.269 3.252 

3.50 0.411 0.424 3.804 7.433 1. 1398 1.1338 3.823 3.803 

4. 00 0.514 0.525 4.750 9.203 1. 1403 1.1347 4.373 4.350 

4.50 0.630 0.640 5.824 11.219 1. 1418 1.1355 4.924 4.897 

5. 00 0.701 0.709 6.481 12 .437 1. 1421 1.1360 5.473 5.443 

5.50 0.766 0.773 7.086 Î3.55Î t e 1426 1.1364 6.023 5.930 

6.00 0.801 0. 807 7.401 14.147 1. 1427 1.1366 6.571 6.536 

6,50 0.837 0.842 7.738 14.760 1. 1429 1.1367 7.120 7.081 

7. 00 0.849 0.854 7.854 14.370 1 1 9 1430 1.1368 7.668 7.626 

8. 00 0.883 0.887 8.168 15.549 1. 1431 1.1370 8.764 8.717 

9. 00 0.898 0.902 8.307 15.812 1. 1432 1.1370 9.860 9.807 

10. 00 0.906 0.910 8.380 15.952 1. 1432 1.1371 I 0.956 10.900 

20. 00 0.957 0.958 8.847 16.794 ÎC 1434 1.1373 21.916 21.799 

^ Note : = t • f * 5 g 
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Table 39. Calculated heats of adsorption for water vapor adsorbed on 

E-glass fiber 

Pj mmHg kcal/mole 

^f 
20. 05 6.05 P1/P2 In P^/P^ kcal/mole 20.05 6. 05 

2 0.10 0.02 5.17 1.646 19.12 18.54 18.57 

2.5 0.40 0.10 4. 00 1.386 16.16 15.58 15.60 

3 2.50 0.83 3.01 1.102 12.80 12.12 12.25 

3.5 5.20 1.80 2.89 1.060 12.32 11.73 11.76 

4 7.15 2.63 2.72 1.001 11.63 11.05 11.07 

4.5 8.90 3.30 2.70 0. 993 11.54 10.96 10.98 

5 10.60 4.00 2.65 0.974 11.32 10.73 10.76 

5.5 12.10 4.65 2.60 0.955 11.09 10.51 10.54 

6 13.35 5.20 2.57 0.943 10. 96 10.38 10.40 

7 14.73 5.83 2.53 0.928 10.78 10.20 10.23 

8 15.50 6.13 2.53 0.928 10. 78 10.20 10.23 

9 15.84 6.30 2.51 0. 920 10.69 10.11 10.13 

10 15.98 6.36 2.51 Oo 920 10.69 10.11 10.13 

12 16.00 6.37 2.51 0. 920 10.69 10.11 10.13 

14 16.01 6.37 2.51 0.920 10.69 10.11 10.13 

16 16.01 6,38 2.51 0.920 10.69 10.11 10.13 

18 16.08 6.40 2.51 Oc 920 10.69 10.11 10.13 

20 16.38 6.51 2.52 0.924 10.74 10.15 10.18 

22 16.98 6.76 2.51 0. 920 10.69 10.11 10.13 

®Note; AHg = RT^T^/CT. - In P^/P^ 

^d = ^"a " 
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Table 40« Calculated heats of adsorption for water vapor adsorbed on 

E-glass pellet 

P, mmHg A"a kcal/mole 

^f 
19.99 10. 06 P1/P2 In /P2 kcal/mole 19.99 10.06 

1 0.10 0.03 3.33 1.203 19.99 19.40 19.42 

2 0.47 0.20 2.35 0.854 14.19 13.61 13.62 

2,5 1 = 00 0.48 2.00 0.722 12.00 11.42 11.44 

3 3.06 1.54 1.99 0.688 11.44 10.86 10.88 

3.5 5.70 2.90 1.97 0.678 11.26 10.68 10.70 

4 8.06 4.20 1.92 0.652 10.83 10.25 10.27 

4.5 9.90 5.10 1.94 0.663 11.01 10.43 10.45 

5 11.52 5.90 1.95 0.668 11.10 10.52 10.55 

5.5 12.65 6.60 1.92 0.652 10.83 10.25 10.27 

6 13.50 7.06 1.92 0.651 10.83 10.25 10.27 

7 14.70 7.66 1.92 0.652 10.83 10.25 10.27 

8 15.30 8.00 1.91 0.647 10. 75 10.17 10.19 

9 15.68 8.20 1.91 0.647 10.75 10.17 

cn 0
 

10 15.87 8.33 i.91 0.647 10.75 10.17 10.19 

12 15.92 8.38 1.90 0.642 10.67 10.08 10.10 

14 15.94 8.39 1.90 0.642 10.67 10.08 10.10 

16 15.95 8.40 1.90 0.642 10.67 10.08 10.10 

18 16.00 8.41 1.90 0.642 10.67 10.08 10.10 

20 16.27 8.50 1.91 0.647 10.75 10.17 10.19 

22 16.86 8.90 1.89 0.636 10.57 9.98 10.00 
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Table 4l. Gibbs f r ee  energy and entropy of adsorption for water vapor adsorbed on E-g1ass fiber 

t. 
o 
A A"a 

-- AH, 
kcal/mole P/P 

o 

- AG, 
kcal/mole 1 >

 

e. u. 

20. 05 6.05 kcal/mole 20. 05 6.05 20. 05 6.05 20. 05 6.05 20. 05 6.05 

2 1.87 1.86 19.125 8.584 8.45 0. 006 0.004 3.01 3.03 19. 00 19.43 

2. 5 2.33 2.32 16.10 5.43 5.56 0. 023 0.008 2.20 2.65 11.00 10.44 

3 2.77 2.75 12.80 2.26 2.13 0.143 0.118 1.13 1.18 3.85 3.39 

3. 5 3.22 3.21 12.32 1.78 1.64 0.296 0.256 0171 0. 76 3.64 3.18 

4 3.68 3.66 11.63 1.09 0.96 0.408 0.374 0.52 0.55 2.47 2.31 

4. 5 4.14 4.11 11.54 1.00 0.86 0.507 0.469 0.39 0.42 2.05 1.59 

5 4.59 4.57 11.32 0.78 0.64 0.604 0.568 0.29 0.31 1.65 1.18 

5. 5 5.05 5.02 11.09 0.55 0.42 0.690 0.661 0.22 0.23 1.16 0.69 

6 5.51 5.47 10.96 0.42 0.28 0. 761 0. 725 0.16 0.18 0.88 0.38 

7 6.42 6.38 10.78 0.24 0.11 0.840 0.828 0.10 0.10 0.48 0.02 

8 7.34 7.29 10.78 0.24 0.11 0.881 0.871 0.07 0.07 0.10 -0.38 

9 8.26 8.21 10.69 0.15 0. 02 0.903 0.895 0.06 0.06 0.31 -0.16 

10 9.17 9.12 10.69 0.15 0.02 0.911 0.904 0.05 0.05 0.33 -0.14 

12 11.01 10.94 10.69 0.15 0. 02 0.912 0.905 0.05 0.05 0.33 

O
 

1 

14 12.84 12.77 10.69 0.15 0. 02 0.913 0.905 0.05 0.05 0.33 -0.13 

16 14.68 14.59 10.69 0.15 0. 02 0.913 0.907 0.05 0.05 0.33 -0.13 

18 16.51 16.41 10.69 0.15 0. 02 0.917 0.909 0.05 0.05 0.34 -0.12 

20 18.35 18.24 10.69 0.19 0.06 0.934 0.925 0.04 0.04 0.53 0. 08 

22 20.18 20.06 10.69 0.15 0, 02 0.968 0.961 0.02 0.02 0.44 -0. 01 
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Table 42. Gibbs free energy and entropy of adsorption for water vapor adsorbed on E-glass pellet 

>
 o

 

A"a 

- AH, 
kcal/mole P/P 

n 

- AG, 
kcal/mole - AS, e. u. 

^f 
19.99 10. 06 kcal/mole 19.99 10.06 19.99 10.06 19.99 10.06 19.99 10.06 

1 0.93 0.93 19.98 9.44 9.35 0.006 0.003 3.03 3.22 21.88 21.63 

2 1.86 1.85 14.19 4.46 4.37 0.027 0.025 2.11 2.06 8.03 8.13 

2. 5 2.32 2.30 12.40 1.86 1.76 0.057 0.054 1.67 1.64 0.65 0 .43 

3 2.77 2.75 11.74 1.20 1.11 0.175 0.168 1.02 1.04 0.63 0.23 

3. 5 3.22 3.20 11.26 0.72 0.63 0.325 0.314 0.65 0.67 0.24 0 

4 3.68 3.66 10.83 0.29 0.20 0.460 0.454 0.45 0.44 0 

4. 5 4.13 4.11 11.02 0.47 0.38 0.565 0.552 0.33 0.33 0.49 0.16 

5 4.59 4.57 11.10 0.56 0.46 0.657 0.638 0.24 0.25 1.07 0.74 

5. 5 5.05 5.02 10.83 0.29 0.20 0.722 0.714 0.19 0.19 0.35 0.02 

6 5.51 5.48 10.83 0.29 0.20 0.762 0.764 0.16 0.15 0 0 

7 6.42 6.39 10.83 0.29 0.20 0.838 0.828 0.10 0.11 0.65 0.47 

8 7.34 7.30 10,75 0.21 0.11 0.873 0.865 0. 08 0.08 0.44 0.12 

9 8.26 8.21 10.75 0.21 0.11 0.894 0.887 0.06 0.07 0.49 0.16 

10 9.17 9.13 10.75 0.21 0 .11 0.905 0.901 0,06 0.06 0.51 0.19 

12 11.01 10.95 10.67 0.13 0.04 O.9O8 0.906 0.05 0.05 0.24 0 

14 12.85 12.78 10.67 0.13 0.04 0.909 0.907 0.05 0.05 0.24 0 

16 14.68 14.60 10,67 0.13 0.04 0.910 0.908 0.05 0.05 0.24 0 

18 16.51 16.43 10.67 0.13 0.04 0.913 0.910 0.05 0.05 0.25 0 

20 18.35 18.25 10.67 0.21 0.11 0.928 0.919 0.04 0.05 0.56 0.23 

22 20.18 20.07 10.57 0.03 -0.03 0.962 0.963 0.02 0.02 0.01 0 
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E-qlass-benzene vapor system 

Table  43« Calculated f i lm thickness  of  benzene vapor adsorbed on 

E-glass  pel  le t  

o 
p/p_ Pj mmHg f Sf" 

t,A 18. 00 19 .86 18. 00 19 .86 18 .00 19 .86 18.00 19 .86 

2 0.0125 0.0133 0. 849 0.995 1. 110 1. 107 1.811 1.807 

2.25 0.0138 0.0147 0.918 1.099 1. 111 1. 108 2.038 2.034 

2.50 0. 0152 0.0162 1.033 1.212 1. 111 1. 109 2.267 2.261 

2.75 0. 01 70 0.0180 1.156 1.346 1. 112 1. 109 2.494 2.488 

3.00 0.0185 0.0197 1.258 1.473 lo 112 1. 109 2.722 2.715 

3.25 0. 0216 0.0230 1.468 1.720 1. 113 1. 110 2.951 2.943 

3.50 0.0255 0. 0267 1.734 1.997 1. 114 1. in 3.181 3.172 

3.75 0.0295 0.0315 2.006 2.356 1, 115 1. 112 3.410 3.402 

4.00 0.0360 0.0380 2.447 2.842 1. 116 1. 113 3.641 3.631 

4.50 0.0730 0.0770 4.963 5.759 1. 120 1. 117 4.110 4.100 

4.75 0.1 000 0.1050 6.799 7.854 1. 122 1. 118 4.348 4.334 

5.00 0.160 0.166 10 .878 12.417 1. 124 1. 121 4.584 4.572 

5.25 0.305 0.310 20.744 23.188 ] ̂ 127 1 _ 124 4.828 4.815 

5.50 0.730 0.740 49.632 55.553 1. 132 1. 129 5.079 5.066 

6.00 0. 798 0.800 54.256 59.879 1. 132 1. 129 5.542 5.529 

6.50 0.860 0.865 57.791 64c 703 1. 132 1. 130 6.006 5.991 

7.00 0.890 0.894 59.151 66.873 1. 133 1. 130 6.469 6.453 

8.00 0.950 0.954 64.590 71.361 1. 133 1. 130 7.396 7.376 

9.00 0.960 0.963 65.270 72.034 1. 133 1. 130 8.321 8.299 

10.00 0.980 0.892 66.63 0 73.455 1. 133 1. 130 9.247 9.222 

\ = CfSb 
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Table 44. Calculated heats of adsorption for benzene adsorbed on E-glass 

pellet 

p^nmiHg . P,/P2 lnp^/p2 AH^ q^, kcal/mole 

18.00 19.86 kcal/mole 18.00 19-86 

2.0 0.071 0.084 1.20 0.182 16.625 16.047 16.043 

2.5 0.900 0.107 1.19 0.178 16.224 15.746 15.742 

3.0 1.30 1.55 1.19 0.174 15.859 15.281 15.277 

3.5 2.20 2.60 1.18 0 .169 15.467 14.889 14.885 

4.0 3.90 4.60 1.18 0.165 15.094 14.516 14.512 

4.5 10.0 11.5 1.15 0.140 12.760 12.182 12.178 

5.0 49.0 55.5 1.13 0.124 11.356 10.778 10.774 

5.5 54.5 61.0 1.12 0.113 10.326 9.748 9.742 

6.0 57.6 64.2 1.11 0.109 9.998 9.420 9.416 

7.0 63.0 69.6 1.11 0.104 9.515 8.937 8.933 

8.0 65.0 72.0 1.11 0.102 9.360 8.782 8.778 

9.0 65.9 72.8 1.10 0.101 9.187 8.609 8.605 

10,0 66o3 73.3 1.10 0.100 9.114 8.536 8.532 

18.5 67.1 73.9 1.10 0.098 8.932 8.354 8.350 

• T2)'nP,/P2 
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Table 45. Gibbs free energy and entropy of adsorption for benzene adsorbed on E-glass pellet 

t. % A"a 

1 0
 

kcal/mole^ P/P 
0 

— AG, 1 kcal/mole I
 

E
>
 

e. u. 

^f 
18.00 19.86 kcal/mole 18.00 19.86 18.00 19.86 18. 00 19.86 18.00 19.86 

1 1.05 1.06 17.05 8.87 8.89 0.01 0.01 2.72 2.71 21.10 21.08 

1.5 1.60 1.63 16.80 8.62 8.64 0.01 0.01 2.68 2.64 20.38 20.47 

2 2.17 2.18 16.63 8.44 8.46 0.01 0.01 2.53 2.50 20,30 20.25 

2.5 2.68 2.70 16.22 8.04 8.06 0.02 0. 02 2.36 2.34 19.51 19.53 

3 3.20 3.23 15.86 7.68 7. 70 0. 02 0. 02 2.26 2.23 18.59 18.66 

3.5 3.77 3.81 15.47 7.28 7.31 0.03 0.03 1.96 1.96 18.28 18.24 

4 4.24 4.28 15.09 6.91 6.93 0.06 0. 06 1.66 1.66 18.03 17.99 

4.5 4.81 4.85 12.76 4.52 4.60 0.13 0.15 1.16 1.12 11.73 11.87 

5 5.35 5.39 11.36 3.17 3.20 0.-/3 0.73 0.18 0.18 10.27 10.28 

5.5 6.00 6.04 10.33 2,14 2.17 0.80 0.81 0.13 0.13 6.91 6.94 

6 6.46 6.51 10.00 1.81 1.84 0.87 0.87 0.08 0.08 5.95 5.99 

7 7.51 7.58 9.52 1,33 1.35 0.94 0.94 0.04 0.04 4.44 4.49 

8 8.60 8.69 9.36 1.18 1.20 0.96 0.97 0.02 0.92 3.96 4.01 

9 9.71 9.80 9.19 I ..00 1.02 0.97 0.98 0.02 0.02 3.39 3.45 

10 10.80 10.90 9.11 0,93 0.95 0.99 1.00 0.01 0.01 3.17 3.23 

18.5 20.01 20.12 8.93 0,74 0.77 0
 

0
 0

 
0
 0.00 0.00 2.55 2.61 

^Heat of condensation was calculated from the following equation (4): 

AH, = 5922,4R - 6.I94RT 
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Sorption Rate Data 

Table 46. Adsorption rate data for water vapor adsorbed on IR-activated 

E-g1ass pellet at 20°C 

ty mi no Q^mg q, 

mg/mg 

q/Cq^-q) n dn/dt 

molec»/gm molec./gm. mi n. 

0.5 

] 

2 

3 

4 

5 

6 

8 

10 

12 

18 

24 

30 

36 

42 

48 

54 

60 

90 

120 

0.0880 

0.1232 

0.1808 

0.240 

0.3 072 

0.3 744 

0.440 

0.552 

0.6144 

0.7488 

I.00096 

1.2036 

1.3728 

1.536 

1.6896 

1.8368 

1.9648 

2.064 

2.609 

2.94242 

0.00029 

0.00040 

0.00059 

0.00078 

0. 00100 

0.00122 

0. 00143 

0. 00180 

0. 00200 

0.00244 

0.00329 

0.00394 

0. 00447 

0.00500 

0,00550 

0.00598 

0.00640 

0.00672 

0. 00850 

0.00958 

1.0223 

1.0315 

1.04695 

1.06329 

1.08247 

1.10236 

1.12249 

1.15862 

1.17978 

1.22807 

1.33404 

U42857 

1.51625 

1.61538 

1.72131 

1.83673 

1.95046 

2.04878 

2.83463 

3,70044 

9.63x10 

1.35x10 

1.98x10 

2.63x10 

3.36x10 

4.10x10 

4.82x10 

6.04x10 

18 

,19 

J 9 

19  

,19 

,19 

,19 

,19 

6.73x10 

8.20x10 

1.10x10 

1.32x10 

1.50x10 

1.68x10 

1.85x10 

2.01x10 

2.15x10 

2.26x10 

2.85x10 

3.22x10 

19 

,19 

,20 

,20 

.20 

,_20 

,20 

20 

,20 

,20 

,20 

1.93x10 

7.71x10 

6.31x10 

6.48x10 

7.36x10 

7.36x10 

7.28x10 

6.13x10 

3.42x10 

7.36x10 

4.76x10 

3.65x10 

2.98x10 

2.98x10 

2.80x10 

2.69x10 

2.33x10 

1.81x10 

1.99x10 

1.21x10 

19 

18 

18 

18 

18 

18 

18 

18 

18 

18 

18 

18 

18 

18 

18 

18 

18 

18 

18 

18 



www.manaraa.com

Tabl 

ta mi 

0. 

1 

2 

3 

4 

5 

6 

8 
10  

12 

18 

24 

30 

36 

42 

48 

54 

60 

90 

120 

180 

240 

300 

194 

Adsorption rate data for water vapor adsorbed on non IR-

activated E-giass pellet at 20°C 

q, qy (q^-q ) n 

mg/mg molec./gm 

dn/ dt 

molec./gm. mi n. 

0. 080 

0.141 

0.243 

0.344 

0.416 

0.480 

0.5376 

0.6160 

0.7232 

0.7920 

0.9808 

1.1280 

1.2560 

1.3680 

1.4672 

1.5600 

1.6416 

1.7152 

2.000 

2.192 

2.427 

2.520 

2.568 

0. 00026 

0.00046 

0.00079 

0.00112 

0. 00135 

0. 001 56 

0. 00175 

0.002 00 

0.00235 

0.00258 

0. 00319 

0.00367 

0.00408 

0.00445 

0.00477 

0.00507 

0.00534 

0.00558 

0.00650 

0.00713 

0.00789 

0.00820 

0100835 

1.3195 

1.05763 

1.10390 

1.15357 

1.19188 

1.22814 

1.26271 

1.31301 

1.3865 

1.44196 

1.61178 

1.77473 

1.94578 

2.12500 

2.31375 

2.52344 

2o 74194 

2.97422 

4.42466 

6.59184 

16.47959 

40.3750 

161.5000 

8.78x10^8 

1.54x10^9 

2.66x10^9 

3.76x10^9 

4.55x10^^ 

5.25x10^9 

5.88x10^9 

6.738x10^9 

7.910x10' 9 

8.663x10^9 
20 

1.07x10 

1.23x10^° 

1.37x10^° 

1.49x10-° 

1.60x1 of° 
20  

1.71x10 
20 

1.79x1 0^ 

1.876x10 

2.187x10' 

2.397x10 

2.654x10 

2.756x10 

2.808x10 

.20 

,^0 

,20 

.20 

1.75x10 

1.33x10 

1.12x10 

19 

19 

19 

1.1 Oxi 0^ 9 
18 

18 
7.87x10 

7.00x10 

6.30x10 

4.287x10 

5.86x10 

18 

18 

18 

3.76x10 

3.44x10 

2.68x10 

2.33x10 

2,04x10 

1.81x10 

1.69x10 

1.48x10^8 

18 

18 

18 

18 

18 

18 

18 

1.3rxl0 

1.04x10 

7.00x10 

4.29x10 

1.69x10 

8.75x10 

18 

18 

17 

17 

17 

16 
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Adsorption rate data for water vapor adsorbed on IR-

activated E-glass pellet at 18°C 

CLmg q, q/Cq^-q) " dn/dt 

mg/mg molec./gm molec./gm.min. 

0. 052 

0.088 

0.156 

0.184 

0.212 

0.252 

0.288 

0.340 

0.392 

0.444 

0.576 

0.684 

0.792 

Qi S92 

0.972 

1.052 

1.120 

1.160 

1.300 

1.372 

?.440 

1.4920 

1.5360 

0.00017 

0.00028 

0.00051 

0.00060 

0.00069 

0.00082 

0.00094 

0.00111 

0.00127 

0, 00144 

0.00187 

0.00223 

0.00258 

0.00290 

0.00318 

0. 00342 

0.00365 

0.00378 

0.00423 

0.00447 

0. 00469 

0. 00486 

0.00500 

1.0327 

1.0565 

1.1048 

1.1260 

1.1480 

1.1810 

1.2124 

1.2607 

1.3131 

1.3700 

1.5393 

1.7125 

1.9296 

2.1862 

2.4610 

2.7770 

3.1374 

3.3967 

4.7791 

6.0441 

8.0588 

10.8158 

15.2222 

5.69x10 

9.64x10 

Î.71x10 

2. 01x1 0 

2.32x10 

2.76x10 

3.15x10 

3.72x10 

4.29x10 

18 

18 

19 

19 

19 

19 

19 

19 

19 

19 
4.86x10 

6.31x10^9 
,19 

7.49x10' 

8.67x10 

9.77x10 

1.07x10 

1.15x10' 

1.22x10 

1.27x10 

1.42x10 

1.50x10 

19 

19 

20 
I 

20 

20 

,20 

,20 

20 

1.14x10 

7.88x10 

7.44x10 

3.07x10 

3.07x10 

4.38x10 

3.94x10 

2.85x10 

2.85x10 

2.85x10 

2.41x10 

1.97x10 

1.97x10 

1.82x10 

1.53x10 

1.38x10 

1.24x10 

7.30x10 

19 

18 

18 

18 

18 

18 

18 

18 

18 

18 

18 

18 

18 

18 

18 

18 

18 

17 

1.58x10 

1.63x10 

1.68x10 

20 

20 

20 

5.1 0x1 0 

2.63x10 

1.24x10 

9.49x10 

8.03x10 

17 

17 

17 

1 6  

16 
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Adsorption rate data for water vapor adsorbed on non 

!R-activated E-g1ass pellet at 18°C 

a,mg q, q/Cq^-q) n 

mg/mg molec./gm. 

dn/dt 

molec»/gm» mi n<, 

0.0432 

0.06160 

0.0768 

0.120 

0.1472 

0.184 

0.2056 

0.2584 

0.3104 

0.3408 

0.4456 

0.5256 

0.6088 

0.6760 

0.7392 

0.7992 

0.8520 

0.87040 

1.0088 

1.0488 

1.0576 

1.0696 

1.0760 

0.00014 

0.00020 

0.00025 

0.00039 

0.00048 

0.00060 

0. 00067 

0. 00084 

0. 00101 

0.00111 

0.00145 

0. 001 71 

0. 00198 

0.0022 0 

0.00241 

0. 00260 

0.00277 

0. 00283 

0.00328 

0.00341 

0,00344 

0. 00348 

0.00350 

1.04135 

1.06002 

1.07595 

1.12397 

1.15646 

1.20354 

1.23300 

1.31148 

1.39918 

1.45610 

1.69365 

1.93457 

2.27045 

2.64078 

3.11927 

3.76731 

4.61017 

5.0000 

13 . 73 737 

27.75510 

35.78947 

59.13043 

90.66667 

4.73x10 

6.74x10 

8.41x10 

1.31x10 

1.61x10 

2.01x10 

2.25x10 

2.83x10 

18 

18 

18 

19 

19 

,19 

19 

3.39x10 

3.73x10 

4.88x10 

5.75x10 

6.67x10 

7.40x10 

8.09x10 

8.75x10 

9.33x10 

9.53x10 

19 

,19 

,19 

19 

19 

,19 

19 

19 

19 

19 

IQ 

. 10x10 

.15x10 

. 16x10 

>20 

.20 

. 17x10' 

.18x10 

,20 

20 

.20 

9.46x10'^ 

4.03x10'® 

1.66x10^8 

4.73xlo'G 

2.98x10'® 

4.03x10^8 

2.36x10'® 

2.89x10^8 

2.84x10^8 

1.66x10'® 

1.91x10^8 

1.46x10'® 

1.52x10^8 

1.22x10'® 
18 

1.15x10'" 

1.09x10^8 

9.63x10'7 

3.36x10^7 

5.05x10'7 

1.46x10^7 

1.60x10'^ 

2.19x10^^ 

1.17x10^6 
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Adsorption rate data for water vapor adsorbed on IR-activated 

E-glass pellet at 18.9°C 

Qjfng q, q^/Cq^-q) n dn/dt 

mg/mg molec./gm molec./gm.mi n. 

0.056 

0.104 

0.152 

0.192 

0.232 

0.264 

0.296 

0.456 

0.456 

0.536 

0.744 

0.920 

1.088 

1.240 

1.352 

1.424 

1.528 

1.621 

2.000 

2.264 

2.640 

2.928 

3.096 

0.00018 

0.00034 

0. 00049 

0.00062 

0.00075 

0.00086 

0.00096 

0. 00148 

0.00148 

0.00174 

0. 00242 

0.00299 

0,00354 

0.00404 

0. 00440 

Oo 00464 

0.00497 

0.00528 

O.OO65I 

0.0073 7 

O.OO859 

0.00953 

0.01008 

1.0160 

1.0302 

1.0447 

1.0571 

1.0699 

I.O8O3 

1.0909 

1.1473 

1.1473 

1.1777 

1.2649 

1.3495 

1.4415 

1.53 63 

1.6145 

1.6692 

1.7549 

1.8393 

2.2886 

2.7577 

3.8947 

5.6923 

7.7894 

6.132x10 

1.139x10 

1.664x1 0 

2.102x10 

2. 540x10 

,'8 

,19 

2.89x10 
,19 

3.241x10 

4.993x10 

4.993x10 

4.869x10 

8.147x10 

1.007x10 

1.191x10 

1.358x10 

,19 

,19 

19 

19 

19 

,20 

,20 

.20 

1.480x10 

1.559x10 

1.673x10 

1.775x10 

2.190x10 

2.479x10 

2.891x10 

3.206x10 

3.390x10 

.20 

,20 

,20 

.20 

.20 

,„20  

,20 

.20 

1.23x1 o'9 

1.05x10'9 

5.256x1 o^B 

4.38x10^8 

4.38x10^® 

3.504x1 O^G 

3.50x10^8 

4.38x1 O^B 

4.38x10^8 

4.38x10^8 

3.79x10^8 

3.21x10'^ 

3.06x10'^ 

2,77x10'^ 

2.04x10'° 

1.31x1 O^G 

1.89x10^8 

1.69x10^^ 

I.38XÏ0I® 

9.63x10^7 

6.86x1o'7 

5.25x10^7 

3.06x10^7 
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Adsorption rated data for water vapor adsorbed on non IR-

activated E-glass pellet at IS.9°C 

Q^mg q, 

mg/mg 

qz/fq^-q) 

molec./gm 

dn/dt 

molec./gmomi n* 

0. 060 

0.116 

0.164 

0.209 

0.252 

0.292 

0.324 

0.428 

0.492 

0.548 

0.676 

0.796 

0.888 

0.380 

1.052 

1.1104 

1.1560 

1.1960 

1.3080 

1.3840 

1.4400 

1.4800 

1.5440 

0.00020 

0.00038 

0.00053 

0.00068 

0.00082 

0.00095 

0.00105 

0.00139 

0.00160 

0.001 78 

0. 00220 

0.00259 

0. 00289 

0.0032 

0.0034 

0.0036 

0.00376 

0.00389 

0.00426 

0.0045 

0.0047 

0.0048 

0.0050 

1.0386 

0.0775 

1.1133 

1.1494 

1.1853 

1.2212 

1.2515 

1.3615 

1.4394 

1.5150 

1.7222 

1.9755 

2.2265 

2.5506 

2.8786 

3.2137 

3.5351 

3.8750 

5.3026 

7.0701 

9.3721 

12.2121 

23.7059 

6.57x10 

1.27x10 

1.79x10 

2.29x10 

2.76x10 

3.19x10 

3.54x10 

4.68x10 

5.38x10 

18 

,19 

19 

19 

19 

19 

19 

19 

19 

19 
6.00x10 

7.40x10'^ 
J 9 8.71x10 

9.72x10 

I.07x10 

1.15x10 

1.21x10 

19 

,20 

.20 

1.26x1n 
20 

1.31x10 
.20 

1.43x10' 

1.51x10 

1.57x10 

.20 

.20 

,20 

1.62x10 

1.69x10 

,20 

.20 

1.31x10 

5.23x10 

5.25x10 

4.99x10 

4.64x10 

4.38x10 

3.50x10 

5.69x10 

19 

18 

18 

18 

18 

18 

18 

18 

5.50x10 

3.06x10 

2.33x10 

2.19x10 

1.68x10 

1.68x10 

1.31x10 

1.06x10 

8.32x10 

7.30x10 

18 

18 

18 

18 

18 

18 

18 

18 

4.08x10 

2.77x10 

1.02x10 

7.30x10 

1.17x10 

16 
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